Home
Search results “Crest of a wave physics ripple”

05:32
This tutorial is about how waves can speed up or slow down when then enter a material with a different optical density, or when water waves enter regions of different depths. This change of velocity can cause the waves to change direction - this is called REFRACTION. Subscribe for more physics tutorials like this: http://bit.ly/Subscribe-Physics-Ninja Water waves will refract when then move from shallow to deep water causing them to speed up. As a result, their wavelength will increase and the refracted ray will 'SPEED AWAY' from the normal line. Remember that the wavefronts are always at 90 degrees to the ray. Use 'RNAR' to work through the steps: 1. Ray (incident ray) 2. Normal (line perpendicular to surface where the ray enters) 3. Angles (label the angle of incident and angle of refraction) 4. Use the refraction rule "SPEED AWAY" to determine which direction the refracted ray will bend. Quick question: During refraction, the wavelength and the speed of the wave changes. What does NOT change about the wave? (Answer... the frequency of the wave does not change) So why do waves get faster in deeper water? The answer is a bit complex, but here is an explanation posted at the Illinois Department of Physics: 1. For a shallow fluid, the motion of the fluid is mostly side-to-side. 2. In order to accumulate more fluid in one place (to make the crest of the wave), each little bit of fluid must travel a little farther than it would have to in deeper water. 3. When a wave passes, the bits of fluid (if you could watch one at a time) travel in ellipses. For shallow water, the ellipses are stretched out horizontally, and in very deep water, they are very nearly circular. 4. So for a wave of the same height (top to bottom of the ellipse), the bits of water must travel farther in the shallow tray than the deep tray. 5. Because the waves of the same height in shallow and deep water exert the same pressure differences due to gravity to get the water moving (although the motion is different due to the fact that the bottom is there), similar forces push and pull on the water. 6. To get the water moving farther and faster with the same force takes a longer time for each push, and hence a slower speed for the wave which travels in the shallow water. " (From https://van.physics.illinois.edu/qa/listing.php?id=2223) For more physics flashcards and tutorials visit https://gcsephysicsninja.com/product/waves-flashcards/
Views: 34688 GCSE Physics Ninja

03:53
Interference of Waves | Interference and superposition explained in light and water waves with animation | Interference of waves in two dimensions | Physics The phenomena of the light which undergoes refraction and reflection by be explained by the 2 theories of light. They are corpuscular and wave theory of light. But some of the other phenomena such as interference and diffraction can only be explained by wave theory of light. We know that 2 or more wave, motions travel in space at the same time. Sometimes these 2 wave motions combine to and some physical effects take place. Inference is once such physical effect. When 2 or more waves cross each other in the same medium, they both interfere and accident takes. This accident is known as interference of waves. Interference is the combine effect of the disturbance caused by the each individual wave at the same place and at same time. This effect can be understood from the principle of superposition of waves. Principle Of superposition of waves: To understand this concept of the superposition, let's understand some of the examples. When we drop a pin in a tank, we see some circular waves. When other another pin is dropped, we see some more waves. These waves travel in the same tank and some or the other time these superimpose on each other. The resultant wave would have amplitude which is the sum of the displacement due to the individual waves. " The principle of superposition of waves states that when two or more waves travel through the same medium simultaneously, the resultant displacement at any point is the vector sum if the displacement due to the individual waves." In our case the pin is dropped in a ripple tank with 2 pins. If Y1 is the displacement caused at a point due to the first source and Y2 is the displace cause by the 2nd source, then the over displacement R at the point of interference would given by R=Y1+Y2 When both the sources have the same amplitude which then Y1,Y 2 would be equal to Y. When Y1 is due the crest or trough and Y2 is also due a crest or trough the resultant would be the maximum and when Y1 is due to a crest and Y2 is due to a trough or vice versa, the displacement would be minimum. When maximum displacement takes place it's called constructive superposition and when minimum displacement takes place it's called the destructive superposition. In constructive displacement, a maximum displacement curve is produced. Thus, when constructive displacement occurs then the phase difference between the waves would be ZERO or a multiple of 2π. When minimum displacement occurs, wave super impose destructively, the phase difference of the waves would be π or an odd integral multiple of the π. Interference of waves: When superposition of waves occurs, they could be constructive or destructive. This physical effort observed as a result of the superposition of waves is called interference. "The physical effect of the superposition of waves from the sources vibrating with the same frequency and amplitude is called the interference of waves. The physical effect is in the form of vibrations in the amplitude of resultant wave in a given potion of the medium" Interference is a special case of superposition of waves which originate from different sources but have the same amplitude, same frequency.
Views: 335391 Elearnin

07:40
Light is so common that we rarely think about what it really is. But just over two hundred years ago, a groundbreaking experiment answered the question that had occupied physicists for centuries. Is light made up of waves or particles? The experiment was conducted by Thomas Young and is known as Young's Double Slit Experiment. This famous experiment is actually a simplification of a series of experiments on light conducted by Young. In a completely darkened room, Young allowed a thin beam of sunlight to pass through an aperture on his window and onto two narrow, closely spaced openings (the double slit). This sunlight then cast a shadow onto the wall behind the apparatus. Young found that the light diffracted as it passed through the slits, and then interfered with itself, created a series of light and dark spots. Since the sunlight consists of all colours of the rainbow, these colours were also visible in the projected spots. Young concluded that light consist of waves and not particles since only waves were known to diffract and interfere in exactly the manner that light did in his experiment. The way I have always seen this experiment performed is with a laser and a manufactured double slit but since the experiment was conducted in 1801 I have always thought that it should be possible to recreate the experiment using sunlight and household materials. That is basically what I did here. I will show the interference pattern I observed with my homemade double slit on 2Veritasium but I chose to use a manufactured double slit here to ensure that the pattern was impressive for observers at the beach. Special thanks to Henry, Brady, and Rupert for their cameos, Glen for filming and Josh for helping create the apparatus. Thanks also to the Royal Society for allowing us to view the original manuscript of Young's lecture and the University of Sydney for lending the double slits. Music by Kevin Mcleod (incompetech.com) Danse Macabre, Scissors
Views: 3609686 Veritasium

05:57
http://www.sciencetutorial4u.com THE BASIC OF WAVES # Waves can only transfer energy but not matters. # Wavelength is the distance from the crest to crest or trough to trough. # Amplitude is half the height of the wave. # Frequency is the number of wave cycles passing in a second (one second). # The unit of frequency is Hertz which is Hz. # If frequency increases, wavelength decreases and vice versa (which means wavelength and frequency have opposite relationship). # The amplitude determines the loudness in a wave sound. Please like, subscribe and share this video, THANK YOU SO MUCH: https://youtu.be/CHnKkPVhCcE Try my PROGRESS TEST VIDEO: http://youtu.be/Iq-txbebSxg MUSICS: "Son of a Rocket" Kevin MacLeod (incompetech.com) Licensed under Creative Commons: By Attribution 3.0 http://creativecommons.org/licenses/by/3.0/ "Cut and Run" Kevin MacLeod (incompetech.com) Licensed under Creative Commons: By Attribution 3.0 http://creativecommons.org/licenses/by/3.0/
Views: 2754 sciencetutorial4u

05:17
This video shows how water waves, sound waves and light waves are all similar. They can all be described in terms of their wavelength, frequency, amplitude and speed. Each of these parameters are defined so that students can see clearly what they mean, and how they are measured. Simple harmonic motion is also introduced and a couple of examples are shown. The difference between the motion of the wave and the motion of the medium is clarified. The famous scientist Heinrich Hertz is discussed.
Views: 23857 AtomicSchool

03:40
http://www.physicshelp.ca Free simple easy to follow videos all organized on our website
Views: 54998 PhysicsEH

01:34
-~-~~-~~~-~~-~- Best explanation on the internet, Please watch: "Ray diagrams Physics - Optical Instruments-Astronomical Telescope" https://www.youtube.com/watch?v=LzII1f3pp-8 -~-~~-~~~-~~-~-

00:42
Motor-boat wake showing dispersion of water waves. The long wavelength water waves can be seen to travel faster than the short wavelength waves. Follow a wave-crest to see that the phase and group velocity of the water waves is different.
Views: 12633 JNHeyman

02:06
MUHAMMAD ALI AKRAM PHYSICS .RIPPLE TANK. CRESTS AND TROUGHS.

07:45
Get Your Crash Course Physics Mug here: https://store.dftba.com/products/crashcourse-physics-mug Waves are cool. The more we learn about waves, the more we learn about a lot of things in physics. Everything from earthquakes to music! Ropes can tell us a lot about how traveling waves work so, in this episode of Crash Course Physics, Shini uses ropes (and animated ropes) to talk about how waves carry energy and how different kinds of waves transmit energy differently. -- Produced in collaboration with PBS Digital Studios: http://youtube.com/pbsdigitalstudios -- Want to find Crash Course elsewhere on the internet? Facebook - http://www.facebook.com/YouTubeCrashC... Twitter - http://www.twitter.com/TheCrashCourse Tumblr - http://thecrashcourse.tumblr.com Support CrashCourse on Patreon: http://www.patreon.com/crashcourse CC Kids: http://www.youtube.com/crashcoursekids
Views: 718734 CrashCourse

02:31
Views: 98092 Keith Meldahl

35:55
Rectifier, Peak Factor, Ripple Factor, Crest Factor, Form Factor, Average and RMS Values, Types of Rectifiers, PIV Rating, PIV, Playlists- Control System- https://www.youtube.com/watch?v=GbDL5VAU8fk&list=PL00WWA9f-4c9yI6Nr6ot8uoOsVnJzdx1R Signals and Systems- https://www.youtube.com/watch?v=W68Q6zRbZ6U&list=PL00WWA9f-4c8Jhs5jc3M0lW-_TF3U4GSQ Network Analysis- https://www.youtube.com/watch?v=GBtu5lizPSY&list=PL00WWA9f-4c_10bMXg_gLkvlWLGrns4FF Digital Electronics- https://www.youtube.com/watch?v=N82C1RXwBIM&list=PL00WWA9f-4c-Xbi57DlbC6GC82pxBkL7_ Engineering Mathematics- https://www.youtube.com/watch?v=mxb2VIuVPbw&list=PL00WWA9f-4c8SYSeEuPgpMtDir1039Na6 GATE Preparation Strategy- https://www.youtube.com/watch?v=VKbdBuzmqTE&list=PL00WWA9f-4c9X9-N321nwlRpyiUO-aOEE Test Series- https://www.youtube.com/watch?v=kkPxBcehCZU&list=PL00WWA9f-4c_-_mtRYPNg3gesDysdECrV
Views: 3037 GATE CRACKERS

12:08
Mr. Andersen introduces the concept of waves. Both transverse and logitudinal waves are described. The relationship between wave speed, wave frequency and wavelength is also included. Intro Music Atribution Title: I4dsong_loop_main.wav Artist: CosmicD Link to sound: http://www.freesound.org/people/CosmicD/sounds/72556/ Creative Commons Atribution License
Views: 123449 Bozeman Science

13:06
www.deltastep.com
Views: 176273 DeltaStep

02:52
A Physics revision video introducing the concepts of waves.
Views: 503431 expertmathstutor

29:20
Full Wave Bridge Rectifier, Full Wave Rectifier, Transfer Characteristics of Full Wave Rectifier, Output Wave form of Half Wave Rectifier, Rectifier, Peak Factor of Half Wave Rectifier, Ripple Factor of Half Wave Rectifier, Crest Factor of Half Wave Rectifier, Form Factor of Half Wave Rectifier, Average and RMS Values, Types of Rectifiers, PIV Rating, PIV of Half Wave Rectifier, Playlists- Control System- https://www.youtube.com/watch?v=GbDL5VAU8fk&list=PL00WWA9f-4c9yI6Nr6ot8uoOsVnJzdx1R Signals and Systems- https://www.youtube.com/watch?v=W68Q6zRbZ6U&list=PL00WWA9f-4c8Jhs5jc3M0lW-_TF3U4GSQ Network Analysis- https://www.youtube.com/watch?v=GBtu5lizPSY&list=PL00WWA9f-4c_10bMXg_gLkvlWLGrns4FF Digital Electronics- https://www.youtube.com/watch?v=N82C1RXwBIM&list=PL00WWA9f-4c-Xbi57DlbC6GC82pxBkL7_ Engineering Mathematics- https://www.youtube.com/watch?v=mxb2VIuVPbw&list=PL00WWA9f-4c8SYSeEuPgpMtDir1039Na6 GATE Preparation Strategy- https://www.youtube.com/watch?v=VKbdBuzmqTE&list=PL00WWA9f-4c9X9-N321nwlRpyiUO-aOEE Test Series- https://www.youtube.com/watch?v=kkPxBcehCZU&list=PL00WWA9f-4c_-_mtRYPNg3gesDysdECrV
Views: 1691 GATE CRACKERS

03:30

20:09
Periodic waves, periodic transverse waves, crest, trough, wavelength, amplitude, time period, frequency and velocity of wave all explained in one video.
Views: 132 Physics Wisdom

04:41
Wondering how you can catch the perfect wave? Dive into the fascinating and complex physics of surfing. -- Whether or not you realize it, surfers are masters of complicated physics. The science of surfing begins as soon as a board first hits the water. Surfers may not be thinking about weather patterns in the Pacific, tectonic geology or fluid mechanics, but the art of catching the perfect wave relies on all these things and more. Nick Pizzo dives into the gnarly physics that make surfing possible. Lesson by Nick Pizzo, directed by Wonderlust. Sign up for our newsletter: http://bit.ly/TEDEdNewsletter Support us on Patreon: http://bit.ly/TEDEdPatreon Follow us on Facebook: http://bit.ly/TEDEdFacebook Find us on Twitter: http://bit.ly/TEDEdTwitter Peep us on Instagram: http://bit.ly/TEDEdInstagram View full lesson: https://ed.ted.com/lessons/the-physics-of-surfing-nick-pizzo Thank you so much to our patrons for your support! Without you this video would not be possible! Pavel Zalevskiy, Yankai Liu, Duo Xu, Ghassan Alhazzaa, Miloš Stevanović, Joy Love Om, Gi Nam Lee, Shawn Quichocho, Anika Westburg, Brandy Jones, Devin Harris, Tony Trapuzzano, Jason Weinstein, Kris Siverhus, Alexander Walls, Annamaria Szilagyi, Morgan Williams, Abhijit Kiran Valluri, Mandeep Singh, Sama aafghani, سلطان الخليفي, Marylise CHAUFFETON, Marvin Vizuett, Jayant Sahewal, Quinn Shen, Caleb ross, Elizabeth Cruz, Elnathan Joshua Bangayan, Mullaiarasu Sundaramurthy, Jose Henrique Leopoldo e Silva, Dan Paterniti, Jerome Froelich, Tyler Yoshizumi, Martin Stephen, Justin Carpani, Faiza Imtiaz, Khalifa Alhulail, Tejas Dc, Benjamin & Shannon Pinder, Srikote Naewchampa, Sage Curie, Exal Enrique Cisneros Tuch, Ana Maria, Vignan Velivela, Ahmad Hyari, eden sher, Travis Wehrman, Louisa Lee, Kiara Taylor and Аркадий Скайуокер.
Views: 159983 TED-Ed

24:28
An introduction to Mechanical and Electromagnetic Waves
Views: 1411 Philip Matthews

07:43
PHYSICS - WAVES LECTURE BY SANJIV SIR RGT CLASSES, SAMPLE LECTURE
Views: 542 EDU MANTRA

04:56
video on wave refraction for student pre-lab exercise
Views: 54545 Keith Meldahl

30:12
Centre Tap Full Wave Rectifier, Full Wave Rectifier, Transfer Characteristics of Full Wave Rectifier, Output Wave form of Half Wave Rectifier, Rectifier, Peak Factor of Half Wave Rectifier, Ripple Factor of Half Wave Rectifier, Crest Factor of Half Wave Rectifier, Form Factor of Half Wave Rectifier, Average and RMS Values, Types of Rectifiers, PIV Rating, PIV of Half Wave Rectifier, Playlists- Control System- https://www.youtube.com/watch?v=GbDL5VAU8fk&list=PL00WWA9f-4c9yI6Nr6ot8uoOsVnJzdx1R Signals and Systems- https://www.youtube.com/watch?v=W68Q6zRbZ6U&list=PL00WWA9f-4c8Jhs5jc3M0lW-_TF3U4GSQ Network Analysis- https://www.youtube.com/watch?v=GBtu5lizPSY&list=PL00WWA9f-4c_10bMXg_gLkvlWLGrns4FF Digital Electronics- https://www.youtube.com/watch?v=N82C1RXwBIM&list=PL00WWA9f-4c-Xbi57DlbC6GC82pxBkL7_ Engineering Mathematics- https://www.youtube.com/watch?v=mxb2VIuVPbw&list=PL00WWA9f-4c8SYSeEuPgpMtDir1039Na6 GATE Preparation Strategy- https://www.youtube.com/watch?v=VKbdBuzmqTE&list=PL00WWA9f-4c9X9-N321nwlRpyiUO-aOEE Test Series- https://www.youtube.com/watch?v=kkPxBcehCZU&list=PL00WWA9f-4c_-_mtRYPNg3gesDysdECrV
Views: 1773 GATE CRACKERS

20:14
#iitutor #Physics #TheWorldCommunicates https://www.iitutor.com The wavelength of a transverse wave is the distance between successive crests or troughs measured in the direction of the wave's velocity. Notice that the shape of the wave is repeated or periodic. Each repeated shape represents one complete cycle of the wave. A wavelength is the length of one complete cycle of the wave in the direction of the wave's propagation. For a longitudinal wave, the wavelength is the distance between successive compressions or rarefactions. The amplitude of a wave is defined as the maximum displacement of the medium from its equilibrium position. For a transverse wave, the amplitude is half the distance between a crest and a trough, measured perpendicular to the direction of travel. The amplitude of a sound wave determines the volume (loudness) of the sound, while the amplitude of a light wave determines the brightness of the light. The period of a wave is the time required for one complete cycle of the disturbance. It is also the time for one wavelength to pass a fixed point in the medium, or the time for any point in the medium to complete one whole cycle of the motion it executes as the wave passes. The number of complete cycles that pass a stationary observer per second is called the frequency of the wave. Frequency is measured in cycles per second or hertz (Hz). The period is related to the frequency because the time for one cycle in seconds must be one second divided by the number of cycles per second. For example, if there were five cycles per second the time for one cycle would be 1/5th of a second. The pitch of a sound wave is determined by the sound's frequency. The musical note called middle C has a frequency of 256 Hz, while high C corresponds to a frequency of 512 Hz. The sensation we experience as colour is determined by the frequency of the light waves that enter our eyes. The energy carried per second through an area of one square metre perpendicular to the wave's velocity is called the wave's intensity. The intensity of the wave is a measure of the energy carried by the wave through the medium. The SI units of intensity are watts per square metre. The wave velocity is the speed at which the disturbance moves through a material. It depends on several things: • the kind of wave • the type of material-its density (e.g. are the particles closely packed?). The velocity (v) of a wave depends on its frequency or wavelength, not on the amplitude of the wave. For any given wave the frequency is fixed by the source frequency and the velocity is fixed by the material through which it travels. The frequency and wavelength are related in the following way by the wave equation. The wave motion we have discussed so far is that in which the wave is confined to a string, spring or pipe. If we drop a stone into a pond, the ripples spread out in all directions from the impact point. The ripples are initially circular. If we let off a fire cracker, the blast wave begins to move outward as a spherical pulse. With time, the ideal shape of the front of the disturbance is distorted by intervening objects, and by other disturbances. In each case the waves start in a small group of particles that transfer their vibrational energy to their immediate neighbours. These neighbours pass on the vibration to other particles further from the source of the disturbance. In order to visualise the way in which the disturbance progresses outward it is useful to introduce the idea of a wavefront. At any given time we can join up all of the wave crests, which started from the source at the same time, as a wavefront. Wavefronts that originate from a single point source are usually spherical if they propagate through a volume or circular when they move across a membrane or surface (such as a water-air interface). We can represent the direction in which the wavefront is moving by arrows or rays, drawn at right angles to the wavefront. If we follow one set of arrows from the source outward we may join them to represent a ray. This graph can tell us a lot. For transverse waves the meaning of the displacement axis is obvious. It represents the displacement of particles perpendicular to the energy’s direction. However for longitudinal waves the actual displacement is in the direction of propagation of the wave and the up-or-down direction now represents the displacement from rest. The horizontal axis can he interpreted either as a space (distance) axis, or as a time axis. As the wave progresses, the different points on the wave (such as point X) are affected by the wave. If we consider the zero of time to occur at the instant shown, then it follows that point X will remain at rest for another second (the wave has to travel 1 cm at 1 cm/s and so takes 1 s to do so). It will then move down so that after a further 5 s its displacement will be -1.0 unit.
Views: 477 iitutor.com

00:59
Brief recap of waves in liquid required practical
Views: 80 Science Teacher

04:52
104 - Wave Period and Frequency In this video Paul Andersen explains how the period is the time between wave and the frequency is the number of waves per second. Period is measured in seconds and frequency is measured in Hertz. Wave period and wave frequency are reciprocals of one another. After watching this video you will be able to determine the period (and therefore the frequency) using a position vs. time graph of a wave. Do you speak another language? Help me translate my videos: http://www.bozemanscience.com/translations/ Music Attribution Title: String Theory Artist: Herman Jolly http://sunsetvalley.bandcamp.com/track/string-theory All of the images are licensed under creative commons and public domain licensing: igjav, Ignacio javier. English: A Simple Red Lamp, Modern Look, July 27, 2011. Own work. http://commons.wikimedia.org/wiki/File:Bombilla_roja_-_red_Edison_lamp.svg. ———. Italiano: Icona Di Una Lampadina Spenta Realizzata in Svg, June 2, 2012. File:Bombilla amarilla - yellow Edison lamp.svg. http://commons.wikimedia.org/wiki/File:Gray_Edison_lamp.svg. “Wave on a String.” PhET. Accessed April 13, 2015. http://phet.colorado.edu/en/simulation/wave-on-a-string.
Views: 197825 Bozeman Science

06:18
Light and sound waves do all kinds of cool stuff, because they can be in the same place at the same time, unlike matter. This creates patterns that are important to understand! Let's take a look. Wave simulator: https://phet.colorado.edu/en/simulation/wave-on-a-string Subscribe: http://bit.ly/ProfDaveSubscribe [email protected] http://patreon.com/ProfessorDaveExplains http://professordaveexplains.com http://facebook.com/ProfessorDaveExpl... http://twitter.com/DaveExplains Classical Physics Tutorials: http://bit.ly/ProfDavePhysics1 Modern Physics Tutorials: http://bit.ly/ProfDavePhysics2 Mathematics Tutorials: http://bit.ly/ProfDaveMaths General Chemistry Tutorials: http://bit.ly/ProfDaveGenChem Organic Chemistry Tutorials: http://bit.ly/ProfDaveOrgChem Biochemistry Tutorials: http://bit.ly/ProfDaveBiochem Biology Tutorials: http://bit.ly/ProfDaveBio American History Tutorials: http://bit.ly/ProfDaveAmericanHistory
Views: 112306 Professor Dave Explains

14:01
Wave Motion is the method of energy transfer from one point to another without bulk transfer of matter. What this means is that in wave motion energy is transferred from one point to another but matter does not move from one point to another. One example of wave motion is the motion of sound waves when we speak. The sound energy is transferred from our mouth to the ear of the listener but the air particles which transmit the sound do not move from our mouth to the ear. Only the energy moves as the air particles vibrate. Another example of wave motion is the creation of a ripples in a pond when a stone is dropped in it. Water does not travel from the center of the ripple-circles to the periphery radially. Only the energy imparted by the pebble to the water travels radially outwards. So if we place a leaf in the water, it will not move radially outwards with the ripples. It will simply bob up and down because the water particles only vibrate, they don't move radially. There are 2 types of waves: (i) Non-mechanical Waves These waves are also known as electro-magnetic waves. These do not need material medium to travel through. This means that energy can be transferred from one point to another without there being any particles in between. Sound waves are not electromagnetic waves because they require air/water/steel etc particles to travel. Electromagnetic waves can travel through space. Light waves, radio waves and infra-red waves are examples of electro-magnetic waves. We can feel the heat from the sun because heat waves are electromagnetic and can travel through space. (ii) Mechanical Waves These are waves that exist in a material medium having inertia and elasticity. Energy is transferred in this case, by the vibration of medium particles. For instance, when we speak, the air particles near our mouth vibrate. These air particles cause some other nearby air particles to vibrate -- and soon a disturbance is setup which gets transmitted by the vibration of air particles. In case of all mechanical waves the energy disturbance propagates through periodic motion of medium particles about a mean position. A wave motion which progresses onwards through the medium, with energy transferred across every section of it, is called a traveling or progressive wave. Mechanical waves are of 2 different types: (a) Transverse Waves In case of transverse mechanical waves the medium particles vibrate perpendicular to the direction of transfer of energy. So if energy is being transferred from left to right, the particles move up and down. (b) Longitudinal Waves Are waves in which particles vibrate in a direction parallel to the direction of energy transfer. The energy is transferred through compressions and rarefactions that are created when the particles oscillate about their mean positions. This picture better denotes how longitudinal waves are transmitted. To read complete description and view complete video, log on to http://www.topIITcoaching.com
Views: 18645 topiitcoaching

24:29
Half Wave Rectifier, Output Wave form of Half Wave Rectifier, Rectifier, Peak Factor of Half Wave Rectifier, Ripple Factor of Half Wave Rectifier, Crest Factor of Half Wave Rectifier, Form Factor of Half Wave Rectifier, Average and RMS Values, Types of Rectifiers, PIV Rating, PIV of Half Wave Rectifier, Playlists- Control System- https://www.youtube.com/watch?v=GbDL5VAU8fk&list=PL00WWA9f-4c9yI6Nr6ot8uoOsVnJzdx1R Signals and Systems- https://www.youtube.com/watch?v=W68Q6zRbZ6U&list=PL00WWA9f-4c8Jhs5jc3M0lW-_TF3U4GSQ Network Analysis- https://www.youtube.com/watch?v=GBtu5lizPSY&list=PL00WWA9f-4c_10bMXg_gLkvlWLGrns4FF Digital Electronics- https://www.youtube.com/watch?v=N82C1RXwBIM&list=PL00WWA9f-4c-Xbi57DlbC6GC82pxBkL7_ Engineering Mathematics- https://www.youtube.com/watch?v=mxb2VIuVPbw&list=PL00WWA9f-4c8SYSeEuPgpMtDir1039Na6 GATE Preparation Strategy- https://www.youtube.com/watch?v=VKbdBuzmqTE&list=PL00WWA9f-4c9X9-N321nwlRpyiUO-aOEE Test Series- https://www.youtube.com/watch?v=kkPxBcehCZU&list=PL00WWA9f-4c_-_mtRYPNg3gesDysdECrV
Views: 2222 GATE CRACKERS

00:45

00:13
A simple yet affective way to show wave superposition. When the high parts of the wave (crests) are lined up, the resulting wave is larger in amplitude. When a high part and a low part (trough) meet, the result is a wave of zero amplitude, or a straight line.
Views: 49933 MsBarnett

01:26
Wave motion plays an important part in the world around us. www.GrandpaJohn.TV
Views: 45252 PowerVine

00:11
A tank of water is tilted and waves are generated in different horizontal directions. Shows how wave crests behave after they meet.
Views: 225 tjnoyesjr4

25:34
Quantum mechanics is the branch of physics relating to the very small. It results in what may appear to be some very strange conclusions about the physical world. At the scale of atoms and electrons, many of the equations of classical mechanics, which describe how things move at everyday sizes and speeds, cease to be useful. In classical mechanics, objects exist in a specific place at a specific time. However, in quantum mechanics, objects instead exist in a haze of probability; they have a certain chance of being at point A, another chance of being at point B and so on. Three revolutionary principles Quantum mechanics (QM) developed over many decades, beginning as a set of controversial mathematical explanations of experiments that the math of classical mechanics could not explain. It began at the turn of the 20th century, around the same time that Albert Einstein published his theory of relativity, a separate mathematical revolution in physics that describes the motion of things at high speeds. Unlike relativity, however, the origins of QM cannot be attributed to any one scientist. Rather, multiple scientists contributed to a foundation of three revolutionary principles that gradually gained acceptance and experimental verification between 1900 and 1930. They are: Quantized properties: Certain properties, such as position, speed and color, can sometimes only occur in specific, set amounts, much like a dial that "clicks" from number to number. This challenged a fundamental assumption of classical mechanics, which said that such properties should exist on a smooth, continuous spectrum. To describe the idea that some properties "clicked" like a dial with specific settings, scientists coined the word "quantized." Particles of light: Light can sometimes behave as a particle. This was initially met with harsh criticism, as it ran contrary to 200 years of experiments showing that light behaved as a wave; much like ripples on the surface of a calm lake. Light behaves similarly in that it bounces off walls and bends around corners, and that the crests and troughs of the wave can add up or cancel out. Added wave crests result in brighter light, while waves that cancel out produce darkness. A light source can be thought of as a ball on a stick being rhythmically dipped in the center of a lake. The color emitted corresponds to the distance between the crests, which is determined by the speed of the ball's rhythm. Waves of matter: Matter can also behave as a wave. This ran counter to the roughly 30 years of experiments showing that matter (such as electrons) exists as particles. Original Video: https://www.youtube.com/watch?v=1xj0MC2IuDU

07:33
Here are some classroom demonstrations to discuss Transverse Waves.
Views: 10712 Brendan Noon

01:33
1. A wave on the surface of a lake is seen to travel 20.0 m in 15 seconds. What is its speed? 2. A boater sees two crests separated by 3.0 m. He counts 10 waves passing him in 20 seconds, what speed are the waves traveling at?
Views: 1090 Christopher Rozitis

04:06
✪✪✪✪✪ WORK FROM HOME! Looking for WORKERS for simple Internet data entry JOBS. \$15-20 per hour. SIGN UP here - http://jobs.theaudiopedia.com ✪✪✪✪✪ ✪✪✪✪✪ The Audiopedia Android application, INSTALL NOW - https://play.google.com/store/apps/details?id=com.wTheAudiopedia_8069473 ✪✪✪✪✪ What is MECHANICAL WAVE? What does MECHANICAL WAVE mean? MECHANICAL WAVE meaning & explanation. Source: Wikipedia.org article, adapted under https://creativecommons.org/licenses/by-sa/3.0/ license. A mechanical wave is a wave that is an oscillation of matter, and therefore transfers energy through a medium. While waves can move over long distances, the movement of the medium of transmission—the material—is limited. Therefore, oscillating material does not move far from its initial equilibrium position. Mechanical waves transport energy. This energy propagates in the same direction as the wave. Any kind of wave (mechanical or electromagnetic) has a certain energy. Mechanical waves can be produced only in media which possess elasticity and inertia. A mechanical wave requires an initial energy input. Once this initial energy is added, the wave travels through the medium until all its energy is transferred. In contrast, electromagnetic waves require no medium, but can still travel through one. One important property of mechanical waves is that their amplitudes are measured in an unusual way, displacement divided by (reduced) wavelength. When this gets comparable to unity, significant nonlinear effects such as harmonic generation may occur, and, if large enough, may result in chaotic effects. For example, waves on the surface of a body of water break when this dimensionless amplitude exceeds 1, resulting in a foam on the surface and turbulent mixing. Some of the most common examples of mechanical waves are water waves, sound waves, and seismic waves. There are three types of mechanical waves: transverse waves, longitudinal waves, and surface waves. Transverse waves cause the medium to vibrate at a right angle to the direction of the wave or energy being carried by the medium. Transverse waves have two parts—the crest and the trough. The crest is the highest point of the wave and the trough is the lowest. The distance between a crest and a trough is half of wavelength. The wavelength is the distance from crest to crest or from trough to trough. To see an example, move an end of a Slinky (whose other end is fixed) to the left-and-right of the Slinky (as opposed to-and-fro the Slinky). Light also has properties of a transverse wave, although it is an electromagnetic wave. Longitudinal waves cause the medium to vibrate parallel to the direction of the wave. It consists of multiple compressions and rarefactions. The rarefaction is the farthest distance apart in the longitudinal wave and the compression is the closest distance together. The speed of the longitudinal wave is increased in higher index of refraction, due to the closer proximity of the atoms in the medium that is being compressed. Sound is considered a longitudinal wave. This type of wave travels along a surface that is between two media. An example of a surface wave would be waves in a pool, or in an ocean, lake, or any other type of water body. There are two types of surface waves, namely Rayleigh waves and Love waves. Rayleigh waves, also known as ground roll, are waves that travel as ripples with motion similar to those of waves on the surface of water. Rayleigh waves are much slower than body waves, roughly 90% of the velocity of body waves for a typical homogeneous elastic medium. A Love wave is a surface waves having horizontal waves that are shear or transverse to the direction of propagation. They usually travel slightly faster than Rayleigh waves, about 90% of the body wave velocity, and have the largest amplitude.
Views: 9069 The Audiopedia

03:23
105 - Wavelength In this video Paul Andersen explains how the wavelength is the distance between oscillations in a wave. In a longitudinal wave this might be the distance between areas of compression. In a transverse wave it might be the distance between crests or troughs. A simulation and an example problem is included. Do you speak another language? Help me translate my videos: http://www.bozemanscience.com/translations/ Music Attribution Title: String Theory Artist: Herman Jolly http://sunsetvalley.bandcamp.com/track/string-theory All of the images are licensed under creative commons and public domain licensing: Inaglory, Brocken. English: Four Frame Image Shows the Break of a Single Mavericks Wave. A Tiny Surfer Is Seen in Every Frame., February 14, 2010. I (Brocken Inaglory created this work entirely by myself. Transferred from en.wikipedia. http://commons.wikimedia.org/wiki/File:Mavericks_and_surfer_4_frames_image.jpg. Jacobovitz, Shalom. English: Mavericks Surf Contest 2010., February 13, 2010. Own work. http://commons.wikimedia.org/wiki/File:Mavericks_Surf_Contest_2010b.jpg. “Wave on a String.” PhET. Accessed April 13, 2015. http://phet.colorado.edu/en/simulation/wave-on-a-string.
Views: 44874 Bozeman Science

00:47
Measuring sound science learning hub. 10 may 2011 frequency is measured in hertz (hz). Measured in hertz (hz). Frequency is a measurement of how often recurring event such as wave occurs in measured amount time. Here we are discussing about wave 11jen 2013. Therefore, the vibrator should be adjusted to lowest frequency number of waves that pass a fixed point in given amount time is wave. Bbc gcse bitesize amplitude, wavelength and frequency. One completion of the repeating how do we measure and describe waves? How waves differ based upon their shapes? This lesson will guide you through five wave parameters determining frequency from a graphfrequency #of cycles time. Diagram the wavelength measurement is then used in a simple equation relating speed of wave, its and frequency period formula angular cycle per second hertz hz amplitude formulary where f wave measured you need to be able see specific faces that each can have, based on three example 2 have 60hz. [email protected] calculating frequency of a wave youtube. Determining wave frequency from a graph youtube. Wave frequency, how to calculate frequency. Properties of periodic waves (video) estimating wavelength, frequency, and velocity ripplesck 12 foundationwave parameters amplitude, period, frequency determining wave from a graph world teaching. Cycle full wave to repeat itself510 14 oct 2000 water wavesmeasure the frequency and wavelength of a then compute its velocity. Easy ways to calculate frequency (with pictures) wikihow. For sound, this means the number of pressure waves per second that would move past a fixed point wavelength wave is distance between on one and same next. If its i'm working on a science fair project and thinking about measuring how sound wave's frequency is different in the three states of matter 16wave velocity very difficult to measure except for low ripples long wavelength. Determining wave frequency from a graph slideshare. Ask an expert measuring sound speed frequency science buddies. It is often easiest to measure this from the crest of frequency, wavelength, amplitude and wave speed used in waves what they mean, symbols for them units. Frequency, wavelength, amplitude, & wave speed bbc. Frequency and period of a wave the physics classroom this rate 2 cycles second is referred to as frequency. Wave frequency can be measured by counting the number of crests or. Frequency and period of a wave the physics classroom. Period, being a time, is measured in units of time such as seconds, hours, days or the formula for frequency wave vacuum almost identical to that 31 oct 2010 determining from graphdetermining graphf #of cycles hertz we know some important terms include frequency, number, length, velocity etc. How is the frequency of a photon light measured? long does formula period time cycle per second hertz hz lesson 44 frequency, wavelength, amplitude studyphysics!.
Views: 185 Sityui Spun

04:50
These notes go on p.156 of your science notebook. They are due on Monday (19 Mar) for Blocks 2 and 3, and Tuesday (20 Mar) for Blocks 1 and 4. Important Vocabulary: Wave Energy Medium Mechanical Wave Electromagnetic Wave Vibration Transverse Wave Crest Trough Longitudinal Wave Compression Rarefaction
Views: 438 Ms. Cordz

03:45
http://www.physicseh.com/ Free simple easy to follow videos all organized on our website.
Views: 8023 PhysicsEH

11:11
When two light waves superpose with each other in such away that the crest of one wave falls on the crest of the second wave, and trough of one wave falls on the trough of the second wave, then the resultant wave has larger amplitude and it is called constructive interference.
Views: 119 Naveed Havas

00:27
A short clip taken at Gisborne, New Zealand. Small ocean waves reflecting off a concrete sea wall. Wavefronts of incident and reflected waves clearly noticeable, as well as constructive interference of the crests.
Views: 4486 DarylSmithNZ

06:41
Example of adding two wavepulses together to get the new shape.
Views: 147 sciencejedi

37:21
This time last year, I made a video creating a Menger Sponge that was based on a video from The Coding Train. I can't believe that almost a year later I chose to do another video based on that channel's "challenge" video series. I had no idea it was so long ago! Full code is available from the repository: https://bitbucket.org/sloankelly/youtube-source-repository The original 'riff on Shiff' Menger Sponge video is here: https://www.youtube.com/watch?v=IaW_tDoKDPI&t=1s The Coding Train "Cube Wave" video: https://www.youtube.com/watch?v=H81Tdrmz2LA Dave (@beesandbombs) tweet: https://twitter.com/beesandbombs/status/940639806522085376 Daniel Shiffman's personal twitter: https://twitter.com/shiffman The Coding Train twitter: https://twitter.com/thecodingtrain
Views: 1423 Sloan Kelly

00:29
This 28 second video shows waves diffracting around both side of a large rock and forming a crest in the 'shadow' of the rock.
Views: 348 Rory Geoghegan

00:45
As a sound wave moves from the lips of speaker to ear listener, longitudinal waves are which move particles in direction motion. Short explanation of longitudinal waves and example problems found in this article contains information about the main physical properties mechanical by examples a wave sound so called p produced earthquakes are. Wikipedia wiki longitudinal_wave url? Q webcache. In longitudinal waves the displacement of medium is parallel to propagation wave. Longitudinal and transverse wave motion penn state acoustics. While all electromagnetic waves are transverse, mechanical can be transverse or longitudinal, which brings us to our next type of wave. Longitudinal wave gifs find & share on giphy. Categories of waves the physics classroom. They require a medium in which to propagate describes longitudinal waves. A ripple on a pond and wave string are easily visualized transverse waves. In longitudinal waves, the displacement of medium is parallel to propagation wave in a transverse wave, particles move perpendicular wave's direction travel. Physics longitudinal waves everything maths and science. What are examples of longitudinal waves? Quoraare Bbc gcse bitesize transverse and waves. A slinky is an example of a longitudinal wave the wavelength waves measured by distance separating find gifs with latest and newest hashtags! search, discover share your favorite. Longitudinal waves are in which the a secondary school revision resource for edexcel gcse science about longitudinal wave particle displacement is parallel to direction of another example with both and transverse motion may be sound traveling through air classic. A wave geologic example cork dust a longitudinal is anywhere the particles in medium move parallel to direction of propagation. While transverse waves have crests here we are discussing the longitudinal waves, properties and its examples. Longitudinal waves physics video by brightstorm. Googleusercontent searchlongitudinal waves include sound (vibrations in pressure, particle of displacement, and velocity propagated an elastic medium) seismic p (created by earthquakes explosions). Examples of longitudinal waves are sound in air and primary waves, known as p earthquakes. Longitudinal waves everything maths and sciencetransverse & longitudinal definition examples video wave, sound waves, intensity. What are longitudinal waves? examples of this? Quora. The movement of wave is parallel to medium particles in these waves longitudinal waves, the move (in same direction as) motion. Other ways a wave is sound waves are longitudinal. Eu longitudinal wave wikipedia en. The best gifs are on giphy Longitudinal waves everything maths and sciencetransverse & longitudinal definition examples video wave, sound waves, intensity. An example of a longitudinal wave is sound the. A longitudinal wave main physical properties studybay ck 12 foundation. Picture one group of atoms rushing forward and colliding with another group, transferrin
Views: 527 Aile Aile

02:26
In physics, the "wavelength" of a sinusoidal wave is the "spatial period" of the wave—the distance over which the wave's shape repeats, and the inverse of the spatial frequency. It is usually determined by considering the distance between consecutive corresponding points of the same phase, such as crests, troughs, or zero crossings and is a characteristic of both traveling waves and standing waves, as well as other spatial wave patterns. Wavelength is commonly designated by the Greek letter "lambda" . The concept can also be applied to periodic waves of non-sinusoidal shape. The term "wavelength" is also sometimes applied to modulated waves, and to the sinusoidal envelopes of modulated waves or waves formed by interference of several sinusoids. Assuming a sinusoidal wave moving at a fixed wave speed, wavelength is inversely proportional to frequency of the wave: waves with higher frequencies have shorter wavelengths, and lower frequencies have longer wavelengths. Wavelength depends on the medium that a wave travels through. Examples of wave-like phenomena are sound waves, light, and water waves. A sound wave is a variation in air pressure, while in light and other electromagnetic radiation the strength of the electric and the magnetic field vary. Water waves are variations in the height of a body of water. In a crystal lattice vibration, atomic positions vary. Wavelength is a measure of the distance between repetitions of a shape feature such as peaks, valleys, or zero-crossings, not a measure of how far any given particle moves. For example, in sinusoidal waves over deep water a particle near the water's surface moves in a circle of the same diameter as the wave height, unrelated to wavelength. The range of wavelengths or frequencies for wave phenomena is called a spectrum. The name originated with the visible light spectrum but now can be applied to the entire electromagnetic spectrum as well as to a sound spectrum or vibration spectrum. Wiz Science™ is "the" learning channel for children and all ages. SUBSCRIBE TODAY Disclaimer: This video is for your information only. The author or publisher does not guarantee the accuracy of the content presented in this video. USE AT YOUR OWN RISK. Background Music: "The Place Inside" by Silent Partner (royalty-free) from YouTube Audio Library. This video uses material/images from https://en.wikipedia.org/wiki/Wavelength, which is released under Creative Commons Attribution-Share-Alike License 3.0 http://creativecommons.org/licenses/by-sa/3.0/ . This video is licensed under Creative Commons Attribution-Share-Alike License 3.0 http://creativecommons.org/licenses/by-sa/3.0/ . To reuse/adapt the content in your own work, you must comply with the license terms.
Views: 261 Wiz Science™

22:45
#iitutor #Physics #WorldCommunicates https://www.iitutor.com The development of our civilisation would have been impossible without effective communication. The early development of speech and later the written word allowed us to evolve a cohesive community that was capable of passing ideas and beliefs from generation to generation. The messenger carrying the information has been supplanted by electromagnetic means of transmission that allow transfer of data at close to the speed of light. To all intents and purposes, the sending and receiving of data over satellite links is instantaneous, limited only by the speed of coding and decoding the information into suitable forms for transmission. Speech and many modern means of communication utilise waves. There are many different kinds of waves. The most obvious form of waves are those upon which we surf. Less obvious are sound waves, and possibly the least obvious are light or electromagnetic waves. In this section we discuss what waves really are, and their importance in the world around us. All waves share one thing in common, they provide a means of transferring energy from one point to another without the physical movement of particles from one point to another. Ocean waves are generated thousands of kilometres out to sea by the action of wind on the surface of the ocean. The energy transferred to the surface of the ocean eventually reaches land a few days later as a breaking wave. However, the water molecules that were originally moved by the wind far out at sea do not move far from their original positions. They pass on their energy to neighbouring molecules, which in turn affect their neighbours. In this way energy is transferred without mass motion. If you put energy into a string or rope by shaking one end up and down, the other end of the string will also begin to move up and down. Energy will have been transferred along the string, but the molecules of the string will not have moved from their original relative positions. In a similar way electromagnetic radiation (which includes light) can be thought of as the transfer of energy from one place to another by varying electrostatic and magnetic fields. If you could take hold of an electron in one corner of the room and shake it up and down, you would find that other electrons at the other side of the room would begin to vibrate a split second later. Energy is transferred from one side of the room to the other by an electromagnetic wave. If particles and molecules don't actually move from one place to another when energy is transferred by a wave, what actually happens to the individual particles? Let's consider what happens if we drop a rock into a pool. Ripples spread out from the position where the rock entered the pool and eventually reach the pool's edge. Floating twigs and straw near the centre of the pool are not washed ashore, instead they begin moving up and down about an equilibrium point. Their vertical motion is a form of simple harmonic motion. This vertical oscillation is transferred outward from one region of the pool to the next. As the oscillation builds up in one area it dies away in the preceding area. The wave is seen to travel out from the pool's centre. Waves travel through the medium carrying energy only: they do not take any part of the medium with them. They cause an oscillation of the particles in the medium as they pass, but every particle returns to its equilibrium position after each complete cycle of the wave. In this way the particles of the medium transmit the wave but do not move along with it, and we can think of the wave as energy moving through the medium. Waves are disturbances that transfer energy from one point in a medium to another point. They may propagate in one, two or three dimensions depending on the type of wave and the medium through which it is moving. The best way to understand how waves are formed and how they travel is to consider a single pulse or wave hump. We can make such a pulse on a horizontal string resting on a table by rapidly flicking one end of the string up then down. As your hand pulls the end of the string up, adjacent pieces of the string feel a force that also accelerates them in a vertical direction. They in turn affect neighbouring pieces of string. As each succeeding piece of string moves upward, the crest of the pulse moves along the string. By now your hand has returned to its starting position and the end of the string has also returned to its original position. As adjacent pieces of string reach the top of their motion they experience a force pulling them back toward their starting positions. The source of the pulse is the motion of your hand, and the pulse is transferred down the string because of cohesive forces (tension) between the particles of the string. PB2111 http://youtu.be/YklnpsauXaM
Views: 5722 iitutor.com

01:01
http://physics-animations.com/Physics/English/int_txt.htm#Wla Constructive interference of the circular wave with the wave reflected from the wall. A vibrating ball situated near to the totally reflecting wall excites a circular wave. If the distance between the ball and the wall equals the integer number of the half wavelengths, then on the right of the source the waves will interfere in phase increasing the wave crest.
Views: 1795 Alexander C