Home
Search results “Data mining classification algorithms data”
6 Types of Classification Algorithms
 
02:51
Here are some of the most commonly used classification algorithms -- Logistic Regression, Naïve Bayes, Stochastic Gradient Descent, K-Nearest Neighbours, Decision Tree, Random Forest and Support Vector Machine. https://analyticsindiamag.com/7-types-classification-algorithms/ -------------------------------------------------- Get in touch with us: Website: www.analyticsindiamag.com Contact: [email protected] Facebook: https://www.facebook.com/AnalyticsIndiaMagazine/ Twitter: http://www.twitter.com/analyticsindiam Linkedin: https://www.linkedin.com/company-beta/10283931/ Instagram: https://www.instagram.com/analyticsindiamagazine/
Data Mining Lecture -- Bayesian Classification | Naive Bayes Classifier | Solved Example (Eng-Hindi)
 
09:02
In the bayesian classification The final ans doesn't matter in the calculation Because there is no need of value for the decision you have to simply identify which one is greater and therefore you can find the final result. -~-~~-~~~-~~-~- Please watch: "PL vs FOL | Artificial Intelligence | (Eng-Hindi) | #3" https://www.youtube.com/watch?v=GS3HKR6CV8E -~-~~-~~~-~~-~-
Views: 165784 Well Academy
Data Analysis:  Clustering and Classification (Lec. 1, part 1)
 
26:59
Supervised and unsupervised learning algorithms
Views: 66975 Nathan Kutz
13. Classification
 
49:54
MIT 6.0002 Introduction to Computational Thinking and Data Science, Fall 2016 View the complete course: http://ocw.mit.edu/6-0002F16 Instructor: John Guttag Prof. Guttag introduces supervised learning with nearest neighbor classification using feature scaling and decision trees. License: Creative Commons BY-NC-SA More information at http://ocw.mit.edu/terms More courses at http://ocw.mit.edu
Views: 39219 MIT OpenCourseWare
Data Mining Classification - Basic Concepts
 
03:39
Classification in Data Mining with classification algorithms. Explanation on classification algorithm the decision tree technique with Example.
Decision Tree Classification Algorithm – Solved Numerical Question 1 in Hindi
 
23:15
Decision Tree Classification Algorithm – Solved Numerical Question 1 in Hindi Data Warehouse and Data Mining Lectures in Hindi
Decision Tree with Solved Example in English | DWM | ML | BDA
 
21:21
Take the Full Course of Artificial Intelligence What we Provide 1) 28 Videos (Index is given down) 2)Hand made Notes with problems for your to practice 3)Strategy to Score Good Marks in Artificial Intelligence Sample Notes : https://goo.gl/aZtqjh To buy the course click https://goo.gl/H5QdDU if you have any query related to buying the course feel free to email us : [email protected] Other free Courses Available : Python : https://goo.gl/2gftZ3 SQL : https://goo.gl/VXR5GX Arduino : https://goo.gl/fG5eqk Raspberry pie : https://goo.gl/1XMPxt Artificial Intelligence Index 1)Agent and Peas Description 2)Types of agent 3)Learning Agent 4)Breadth first search 5)Depth first search 6)Iterative depth first search 7)Hill climbing 8)Min max 9)Alpha beta pruning 10)A* sums 11)Genetic Algorithm 12)Genetic Algorithm MAXONE Example 13)Propsotional Logic 14)PL to CNF basics 15) First order logic solved Example 16)Resolution tree sum part 1 17)Resolution tree Sum part 2 18)Decision tree( ID3) 19)Expert system 20) WUMPUS World 21)Natural Language Processing 22) Bayesian belief Network toothache and Cavity sum 23) Supervised and Unsupervised Learning 24) Hill Climbing Algorithm 26) Heuristic Function (Block world + 8 puzzle ) 27) Partial Order Planing 28) GBFS Solved Example
Views: 225226 Last moment tuitions
Top 5 Algorithms used in Data Science | Data Science Tutorial | Data Mining Tutorial | Edureka
 
01:13:27
( Data Science Training - https://www.edureka.co/data-science ) This tutorial will give you an overview of the most common algorithms that are used in Data Science. Here, you will learn what activities Data Scientists do and you will learn how they use algorithms like Decision Tree, Random Forest, Association Rule Mining, Linear Regression and K-Means Clustering. To learn more about Data Science click here: http://goo.gl/9HsPlv The topics related to 'R', Machine learning and Hadoop and various other algorithms have been extensively covered in our course “Data Science”. For more information, Please write back to us at [email protected] or call us at IND: 9606058406 / US: 18338555775 (toll free). Instagram: https://www.instagram.com/edureka_learning/ Facebook: https://www.facebook.com/edurekaIN/ Twitter: https://twitter.com/edurekain LinkedIn: https://www.linkedin.com/company/edureka
Views: 104849 edureka!
KNN Algorithm - How KNN Algorithm Works With Example | Data Science For Beginners | Simplilearn
 
27:43
This KNN Algorithm tutorial (K-Nearest Neighbor Classification Algorithm tutorial) will help you understand what is KNN, why do we need KNN, how do we choose the factor 'K', when do we use KNN, how does KNN algorithm work and you will also see a use case demo showing how to predict whether a person will have diabetes or not using KNN algorithm. KNN algorithm can be applied to both classification and regression problems. Apparently, within the Data Science industry, it's more widely used to solve classification problems. It’s a simple algorithm that stores all available cases and classifies any new cases by taking a majority vote of its k neighbors. Now lets deep dive into this video to understand what is KNN algorithm and how does it actually works. Below topics are explained in this K-Nearest Neighbor Classification Algorithm (KNN Algorithm) tutorial: 1. Why do we need KNN? 2. What is KNN? 3. How do we choose the factor 'K'? 4. When do we use KNN? 5. How does KNN algorithm work? 6. Use case - Predict whether a person will have diabetes or not To learn more about Machine Learning, subscribe to our YouTube channel: https://www.youtube.com/user/Simplilearn?sub_confirmation=1 You can also go through the slides here: https://goo.gl/XP6xcp Watch more videos on Machine Learning: https://www.youtube.com/watch?v=7JhjINPwfYQ&list=PLEiEAq2VkUULYYgj13YHUWmRePqiu8Ddy #MachineLearningAlgorithms #Datasciencecourse #datascience #SimplilearnMachineLearning #MachineLearningCourse Simplilearn’s Machine Learning course will make you an expert in Machine Learning, a form of Artificial Intelligence that automates data analysis to enable computers to learn and adapt through experience to do specific tasks without explicit programming. You will master Machine Learning concepts and techniques including supervised and unsupervised learning, mathematical and heuristic aspects, hands-on modeling to develop algorithms and prepare you for the role of Machine Learning Engineer Why learn Machine Learning? Machine Learning is rapidly being deployed in all kinds of industries, creating a huge demand for skilled professionals. The Machine Learning market size is expected to grow from USD 1.03 billion in 2016 to USD 8.81 billion by 2022, at a Compound Annual Growth Rate (CAGR) of 44.1% during the forecast period. You can gain in-depth knowledge of Machine Learning by taking our Machine Learning certification training course. With Simplilearn’s Machine Learning course, you will prepare for a career as a Machine Learning engineer as you master concepts and techniques including supervised and unsupervised learning, mathematical and heuristic aspects, and hands-on modeling to develop algorithms. Those who complete the course will be able to: 1. Master the concepts of supervised, unsupervised and reinforcement learning concepts and modeling. 2. Gain practical mastery over principles, algorithms, and applications of Machine Learning through a hands-on approach which includes working on 28 projects and one capstone project. 3. Acquire thorough knowledge of the mathematical and heuristic aspects of Machine Learning. 4. Understand the concepts and operation of support vector machines, kernel SVM, Naive Bayes, decision tree classifier, random forest classifier, logistic regression, K-nearest neighbors, K-means clustering and more. 5. Model a wide variety of robust Machine Learning algorithms including deep learning, clustering, and recommendation systems The Machine Learning Course is recommended for: 1. Developers aspiring to be a data scientist or Machine Learning engineer 2. Information architects who want to gain expertise in Machine Learning algorithms 3. Analytics professionals who want to work in Machine Learning or artificial intelligence 4. Graduates looking to build a career in data science and Machine Learning Learn more at: https://www.simplilearn.com/big-data-and-analytics/machine-learning-certification-training-course?utm_campaign=What-is-Machine-Learning-7JhjINPwfYQ&utm_medium=Tutorials&utm_source=youtube For more updates on courses and tips follow us on: - Facebook: https://www.facebook.com/Simplilearn - Twitter: https://twitter.com/simplilearn - LinkedIn: https://www.linkedin.com/company/simplilearn - Website: https://www.simplilearn.com Get the Android app: http://bit.ly/1WlVo4u Get the iOS app: http://apple.co/1HIO5J0
Views: 46940 Simplilearn
Difference between Classification and Regression - Georgia Tech - Machine Learning
 
03:29
Watch on Udacity: https://www.udacity.com/course/viewer#!/c-ud262/l-313488098/m-674518790 Check out the full Advanced Operating Systems course for free at: https://www.udacity.com/course/ud262 Georgia Tech online Master's program: https://www.udacity.com/georgia-tech
Views: 76966 Udacity
Data Mining Classification and Prediction ( in Hindi)
 
05:57
A tutorial about classification and prediction in Data Mining .
Views: 31957 Red Apple Tutorials
Naive Bayes Classification Algorithm – Solved Numerical Question 1 in Hindi
 
08:41
Naive Bayes Classification Algorithm – Solved Numerical Question 1 in Hindi Data Warehouse and Data Mining Lectures in Hindi
Data Mining Lecture -- Decision Tree | Solved Example (Eng-Hindi)
 
29:13
-~-~~-~~~-~~-~- Please watch: "PL vs FOL | Artificial Intelligence | (Eng-Hindi) | #3" https://www.youtube.com/watch?v=GS3HKR6CV8E -~-~~-~~~-~~-~-
Views: 180920 Well Academy
CS5593 - Data Mining - Credit Card Fraud Detection Using Classification Algorithms
 
22:48
Team Members: Prasanti Vinta Lavanya Saravanan Vinothini Rajasekaran
Decision Tree 1: how it works
 
09:26
Full lecture: http://bit.ly/D-Tree A Decision Tree recursively splits training data into subsets based on the value of a single attribute. Each split corresponds to a node in the. Splitting stops when every subset is pure (all elements belong to a single class) -- this can always be achieved, unless there are duplicate training examples with different classes.
Views: 508469 Victor Lavrenko
How kNN algorithm works
 
04:42
In this video I describe how the k Nearest Neighbors algorithm works, and provide a simple example using 2-dimensional data and k = 3. This presentation is available at: http://prezi.com/ukps8hzjizqw/?utm_campaign=share&utm_medium=copy
Views: 415690 Thales Sehn Körting
Decision Tree (CART) - Machine Learning Fun and Easy
 
08:46
Decision Tree (CART) - Machine Learning Fun and Easy ►FREE YOLO GIFT - http://augmentedstartups.info/yolofreegiftsp ►KERAS Course - https://www.udemy.com/machine-learning-fun-and-easy-using-python-and-keras/?couponCode=YOUTUBE_ML Decision tree is a type of supervised learning algorithm (having a pre-defined target variable) that is mostly used in classification problems. A tree has many analogies in real life, and turns out that it has influenced a wide area of machine learning, covering both classification and regression (CART). So a decision tree is a flow-chart-like structure, where each internal node denotes a test on an attribute, each branch represents the outcome of a test, and each leaf (or terminal) node holds a class label. The topmost node in a tree is the root node. ------------------------------------------------------------ Support us on Patreon ►AugmentedStartups.info/Patreon Chat to us on Discord ►AugmentedStartups.info/discord Interact with us on Facebook ►AugmentedStartups.info/Facebook Check my latest work on Instagram ►AugmentedStartups.info/instagram Learn Advanced Tutorials on Udemy ►AugmentedStartups.info/udemy ------------------------------------------------------------ To learn more on Artificial Intelligence, Augmented Reality IoT, Deep Learning FPGAs, Arduinos, PCB Design and Image Processing then check out http://augmentedstartups.info/home Please Like and Subscribe for more videos :)
Views: 136037 Augmented Startups
Data Mining Lecture -- Rule - Based Classification (Eng-Hindi)
 
03:29
-~-~~-~~~-~~-~- Please watch: "PL vs FOL | Artificial Intelligence | (Eng-Hindi) | #3" https://www.youtube.com/watch?v=GS3HKR6CV8E -~-~~-~~~-~~-~-
Views: 37061 Well Academy
Naive Bayes Classifier Algorithm Example Data Mining | Bayesian Classification | Machine Learning
 
07:03
naive Bayes classifiers in data mining or machine learning are a family of simple probabilistic classifiers based on applying Bayes' theorem with strong (naive) independence assumptions between the features. Naive Bayes has been studied extensively since the 1950s. It was introduced under a different name into the text retrieval community in the early 1960s,and remains a popular (baseline) method for text categorization, the problem of judging documents as belonging to one category or the other (such as spam or legitimate, sports or politics, etc.) with word frequencies as the features. With appropriate pre-processing, it is competitive in this domain with more advanced methods including support vector machines. It also finds application in automatic medical diagnosis. for more refer to https://en.wikipedia.org/wiki/Naive_Bayes_classifier naive bayes classifier example for play-tennis Download PDF of the sum on below link https://britsol.blogspot.in/2017/11/naive-bayes-classifier-example-pdf.html *****************************************************NOTE********************************************************************************* The steps explained in this video is correct but please don't refer the given sum from the book mentioned in this video coz the solution for this problem might be wrong due to printing mistake. **************************************************************************************************************************************** All data mining algorithm videos Data mining algorithms Playlist: http://www.youtube.com/playlist?list=PLNmFIlsXKJMmekmO4Gh6ZBZUVZp24ltEr ******************************************************************** book name: techmax publications datawarehousing and mining by arti deshpande n pallavi halarnkar *********************************************
Views: 41796 fun 2 code
Naïve Bayes Classifier -  Fun and Easy Machine Learning
 
11:59
Naive Bayes Classifier- Fun and Easy Machine Learning ►FREE YOLO GIFT - http://augmentedstartups.info/yolofreegiftsp ►KERAS COURSE - https://www.udemy.com/machine-learning-fun-and-easy-using-python-and-keras/?couponCode=YOUTUBE_ML ►MACHINE LEARNING COURSES - http://augmentedstartups.info/machine-learning-courses -------------------------------------------------------------------------------- Now Naïve Bayes is based on Bayes Theorem also known as conditional Theorem, which you can think of it as an evidence theorem or trust theorem. So basically how much can you trust the evidence that is coming in, and it’s a formula that describes how much you should believe the evidence that you are being presented with. An example would be a dog barking in the middle of the night. If the dog always barks for no good reason, you would become desensitized to it and not go check if anything is wrong, this is known as false positives. However if the dog barks only whenever someone enters your premises, you’d be more likely to act on the alert and trust or rely on the evidence from the dog. So Bayes theorem is a mathematic formula for how much you should trust evidence. So lets take a look deeper at the formula, • We can start of with the Prior Probability which describes the degree to which we believe the model accurately describes reality based on all of our prior information, So how probable was our hypothesis before observing the evidence. • Here we have the likelihood which describes how well the model predicts the data. This is term over here is the normalizing constant, the constant that makes the posterior density integrate to one. Like we seen over here. • And finally the output that we want is the posterior probability which represents the degree to which we believe a given model accurately describes the situation given the available data and all of our prior information. So how probable is our hypothesis given the observed evidence. So with our example above. We can view the probability that we play golf given it is sunny = the probability that we play golf given a yes times the probability it being sunny divided by probability of a yes. This uses the golf example to explain Naive Bayes. ------------------------------------------------------------ Support us on Patreon ►AugmentedStartups.info/Patreon Chat to us on Discord ►AugmentedStartups.info/discord Interact with us on Facebook ►AugmentedStartups.info/Facebook Check my latest work on Instagram ►AugmentedStartups.info/instagram Learn Advanced Tutorials on Udemy ►AugmentedStartups.info/udemy ------------------------------------------------------------ To learn more on Artificial Intelligence, Augmented Reality IoT, Deep Learning FPGAs, Arduinos, PCB Design and Image Processing then check out http://augmentedstartups.info/home Please Like and Subscribe for more videos :)
Views: 136216 Augmented Startups
Naive Bayes Classifier | Naive Bayes Algorithm | Naive Bayes Classifier With Example | Simplilearn
 
43:45
This Naive Bayes Classifier tutorial video will introduce you to the basic concepts of Naive Bayes classifier, what is Naive Bayes and Bayes theorem, conditional probability concepts used in Bayes theorem, where is Naive Bayes classifier used, how Naive Bayes algorithm works with solved examples, advantages of Naive Bayes. By the end of this video, you will also implement Naive Bayes algorithm for text classification in Python. The topics covered in this Naive Bayes video are as follows: 1. What is Naive Bayes? ( 01:06 ) 2. Naive Bayes and Machine Learning ( 05:45 ) 3. Why do we need Naive Bayes? ( 05:46 ) 4. Understanding Naive Bayes Classifier ( 06:30 ) 5. Advantages of Naive Bayes Classifier ( 20:17 ) 6. Demo - Text Classification using Naive Bayes ( 22:36 ) To learn more about Machine Learning, subscribe to our YouTube channel: https://www.youtube.com/user/Simplilearn?sub_confirmation=1 You can also go through the Slides here: https://goo.gl/Cw9wqy #NaiveBayes #MachineLearningAlgorithms #DataScienceCourse #DataScience #SimplilearnMachineLearning - - - - - - - - Simplilearn’s Machine Learning course will make you an expert in Machine Learning, a form of Artificial Intelligence that automates data analysis to enable computers to learn and adapt through experience to do specific tasks without explicit programming. You will master Machine Learning concepts and techniques including supervised and unsupervised learning, mathematical and heuristic aspects, hands-on modeling to develop algorithms and prepare you for the role of Machine Learning Engineer Why learn Machine Learning? Machine Learning is rapidly being deployed in all kinds of industries, creating a huge demand for skilled professionals. The Machine Learning market size is expected to grow from USD 1.03 billion in 2016 to USD 8.81 billion by 2022, at a Compound Annual Growth Rate (CAGR) of 44.1% during the forecast period. You can gain in-depth knowledge of Machine Learning by taking our Machine Learning certification training course. With Simplilearn’s Machine Learning course, you will prepare for a career as a Machine Learning engineer as you master concepts and techniques including supervised and unsupervised learning, mathematical and heuristic aspects, and hands-on modeling to develop algorithms. Those who complete the course will be able to: 1. Master the concepts of supervised, unsupervised and reinforcement learning concepts and modeling. 2. Gain practical mastery over principles, algorithms, and applications of Machine Learning through a hands-on approach which includes working on 28 projects and one capstone project. 3. Acquire thorough knowledge of the mathematical and heuristic aspects of Machine Learning. 4. Understand the concepts and operation of support vector machines, kernel SVM, Naive Bayes, decision tree classifier, random forest classifier, logistic regression, K-nearest neighbors, K-means clustering and more. 5. Model a wide variety of robust Machine Learning algorithms including deep learning, clustering, and recommendation systems The Machine Learning Course is recommended for: 1. Developers aspiring to be a data scientist or Machine Learning engineer 2. Information architects who want to gain expertise in Machine Learning algorithms 3. Analytics professionals who want to work in Machine Learning or artificial intelligence 4. Graduates looking to build a career in data science and Machine Learning Learn more at: https://www.simplilearn.com/big-data-and-analytics/machine-learning-certification-training-course?utm_campaign=Naive-Bayes-Classifier-l3dZ6ZNFjo0&utm_medium=Tutorials&utm_source=youtube For more information about Simplilearn’s courses, visit: - Facebook: https://www.facebook.com/Simplilearn - Twitter: https://twitter.com/simplilearn - LinkedIn: https://www.linkedin.com/company/simp... - Website: https://www.simplilearn.com Get the Android app: http://bit.ly/1WlVo4u Get the iOS app: http://apple.co/1HIO5J0
Views: 37390 Simplilearn
KNN Classification– Solved Numerical Question in Hindi(Numerical 1)
 
07:47
KNN Classification– Solved Numerical Question in Hindi(Numerical 1) K-Nearest Neighbour Classification Solved Numerical Problem Data Warehouse and Data Mining Lectures in Hindi
Brian Lange | It's Not Magic: Explaining Classification Algorithms
 
42:45
PyData Chicago 2016 As organizations increasingly make use of data and machine learning methods, people must build a basic "data literacy". Data scientist & instructor Brian Lange provides simple, visual & equation-free explanations for a variety of classification algorithms geared towards helping understand them. He shows how the concepts explained can be pulled off using Python library Scikit Learn in a few lines.
Views: 9472 PyData
Random Forest - Fun and Easy Machine Learning
 
07:38
Random Forest - Fun and Easy Machine Learning ►FREE YOLO GIFT - http://augmentedstartups.info/yolofreegiftsp ►KERAS COURSE - https://www.udemy.com/machine-learning-fun-and-easy-using-python-and-keras/?couponCode=YOUTUBE_ML ►MACHINE LEARNING COURSES -http://augmentedstartups.info/machine-learning-courses ------------------------------------------------------------------------ Hey Guys, and welcome to another Fun and Easy Machine Learning Algorithm on Random Forests. Random forest algorithm is a one of the most popular and most powerful supervised Machine Learning algorithm in Machine Learning that is capable of performing both regression and classification tasks. As the name suggest, this algorithm creates the forest with a number of decision trees. In general, the more trees in the forest the more robust the prediction. In the same way in the random forest classifier, the higher the number of trees in the forest gives the high accuracy results. To model multiple decision trees to create the forest you are not going to use the same method of constructing the decision with information gain or gini index approach, amongst other algorithms. If you are not aware of the concepts of decision tree classifier, Please check out my lecture here on Decision Tree CART for Machine learning. You will need to know how the decision tree classifier works before you can learn the working nature of the random forest algorithm. ------------------------------------------------------------ Support us on Patreon ►AugmentedStartups.info/Patreon Chat to us on Discord ►AugmentedStartups.info/discord Interact with us on Facebook ►AugmentedStartups.info/Facebook Check my latest work on Instagram ►AugmentedStartups.info/instagram Learn Advanced Tutorials on Udemy ►AugmentedStartups.info/udemy ------------------------------------------------------------ To learn more on Artificial Intelligence, Augmented Reality IoT, Deep Learning FPGAs, Arduinos, PCB Design and Image Processing then check out http://augmentedstartups.info/home Please Like and Subscribe for more videos :)
Views: 207467 Augmented Startups
How KNN algrorithm works with example : K - Nearest Neighbor
 
08:33
How KNN algorithm works with example: K - Nearest Neighbor, Classifiers, Data Mining, Knowledge Discovery, Data Analytics
Views: 125966 shreyans jain
Decision Tree Classification Algorithm – Solved Numerical Question 2 in Hindi
 
17:29
Decision Tree Classification Algorithm – Solved Numerical Question 2 in Hindi Data Warehouse and Data Mining Lectures in Hindi
Rule-based Classifiers
 
14:37
Rule-based Classifiers
Views: 14526 Financial Data Science
Data Mining & Business Intelligence | Tutorial #28 | Naive Bayes Classification (Solved Problem)
 
11:34
Order my books at 👉 http://www.tek97.com/ #RanjiRaj #DataMining #NaiveBayes Follow me on Instagram 👉 https://www.instagram.com/reng_army/ Visit my Profile 👉 https://www.linkedin.com/in/reng99/ Support my work on Patreon 👉 https://www.patreon.com/ranjiraj Watch this video to understand how a problem in Naive Bayes is solved in data mining for classification on the given data set. Watch Now! شاهد هذا الفيديو لفهم كيفية حل مشكلة في Naive Bayes في التنقيب عن البيانات للتصنيف على مجموعة البيانات المحددة. شاهد الآن! Assista a este vídeo para entender como um problema em Naive Bayes é resolvido na mineração de dados para classificação no conjunto de dados fornecido. Assista agora! Regardez cette vidéo pour comprendre comment un problème dans Naive Bayes est résolu dans l'exploration de données pour la classification sur l'ensemble de données donné. Regarde maintenant! Sehen Sie sich dieses Video an, um zu verstehen, wie ein Problem in Naive Bayes im Data Mining zur Klassifizierung auf dem gegebenen Datensatz gelöst wird. Schau jetzt! Mire este video para comprender cómo se resuelve un problema en Naive Bayes en la extracción de datos para su clasificación en un conjunto de datos determinado. ¡Ver ahora! Посмотрите это видео, чтобы понять, как проблема в Naive Bayes решена в области интеллектуального анализа данных для классификации по данному набору данных. Смотри! ⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐ Add me on Facebook 👉https://www.facebook.com/renji.nair.09 Follow me on Twitter👉https://twitter.com/iamRanjiRaj Read my Story👉https://www.linkedin.com/pulse/engineering-my-quadrennial-trek-ranji-raj-nair Visit my Profile👉https://www.linkedin.com/in/reng99/ Like TheStudyBeast on Facebook👉https://www.facebook.com/thestudybeast/ ⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐ For more such videos LIKE SHARE SUBSCRIBE Iphone 6s : http://amzn.to/2eyU8zi Gorilla Pod : http://amzn.to/2gAdVPq White Board : http://amzn.to/2euGJ7F Duster : http://amzn.to/2ev0qvX Feltip Markers : http://amzn.to/2eutbZC
Views: 987 Ranji Raj
Comparing Classification and Regression
 
01:37
This video is part of an online course, Intro to Machine Learning. Check out the course here: https://www.udacity.com/course/ud120. This course was designed as part of a program to help you and others become a Data Analyst. You can check out the full details of the program here: https://www.udacity.com/course/nd002.
Views: 9928 Udacity
Decision Tree Induction (in Hindi)
 
09:11
This Video is about Decision Tree Classification in Data Mining.
Views: 20289 Red Apple Tutorials
Rule Base Classifier in Machine Learning in Hindi | Machine Learning Tutorials #7
 
30:15
In this video we have explain the concept of Rule based Classifier in hindi Ml full notes rupees 200 only ML notes form : https://goo.gl/forms/7rk8716Tfto6MXIh1 Machine learning introduction : https://goo.gl/wGvnLg Machine learning #2 : https://goo.gl/ZFhAHd Machine learning #3 : https://goo.gl/rZ4v1f Linear Regression in Machine Learning : https://goo.gl/7fDLbA Logistic regression in Machine learning #4.2 : https://goo.gl/Ga4JDM decision tree : https://goo.gl/Gdmbsa K mean clustering algorithm : https://goo.gl/zNLnW5 Agglomerative clustering algorithmn : https://goo.gl/9Lcaa8 Apriori Algorithm : https://goo.gl/hGw3bY Naive bayes classifier : https://goo.gl/JKa8o2
Views: 10229 Last moment tuitions
Decision Tree Algorithm | Decision Tree in Python | Machine Learning Algorithms | Edureka
 
46:38
** Machine Learning with Python : https://www.edureka.co/machine-learning-certification-training ** This Edureka video on Decision Tree Algorithm in Python will take you through the fundamentals of decision tree machine learning algorithm concepts and its demo in Python. Below are the topics covered in this tutorial: 1. What is Classification? 2. Types of Classification 3. Classification Use Case 4. What is Decision Tree? 5. Decision Tree Terminology 6. Visualizing a Decision Tree 7 Writing a Decision Tree Classifier fro Scratch in Python using CART Algorithm Subscribe to our channel to get video updates. Hit the subscribe button above. Check out our Python Machine Learning Playlist: https://goo.gl/UxjTxm #decisiontree #decisiontreepython #machinelearningalgorithms - - - - - - - - - - - - - - - - - About the Course Edureka’s Machine Learning Course using Python is designed to make you grab the concepts of Machine Learning. The Machine Learning training will provide deep understanding of Machine Learning and its mechanism. As a Data Scientist, you will be learning the importance of Machine Learning and its implementation in python programming language. Furthermore, you will be taught Reinforcement Learning which in turn is an important aspect of Artificial Intelligence. You will be able to automate real life scenarios using Machine Learning Algorithms. Towards the end of the course, we will be discussing various practical use cases of Machine Learning in python programming language to enhance your learning experience. After completing this Machine Learning Certification Training using Python, you should be able to: Gain insight into the 'Roles' played by a Machine Learning Engineer Automate data analysis using python Describe Machine Learning Work with real-time data Learn tools and techniques for predictive modeling Discuss Machine Learning algorithms and their implementation Validate Machine Learning algorithms Explain Time Series and it’s related concepts Gain expertise to handle business in future, living the present - - - - - - - - - - - - - - - - - - - Why learn Machine Learning with Python? Data Science is a set of techniques that enables the computers to learn the desired behavior from data without explicitly being programmed. It employs techniques and theories drawn from many fields within the broad areas of mathematics, statistics, information science, and computer science. This course exposes you to different classes of machine learning algorithms like supervised, unsupervised and reinforcement algorithms. This course imparts you the necessary skills like data pre-processing, dimensional reduction, model evaluation and also exposes you to different machine learning algorithms like regression, clustering, decision trees, random forest, Naive Bayes and Q-Learning. For more information, Please write back to us at [email protected] or call us at IND: 9606058406 / US: 18338555775 (toll free). Instagram: https://www.instagram.com/edureka_learning/ Facebook: https://www.facebook.com/edurekaIN/ Twitter: https://twitter.com/edurekain LinkedIn: https://www.linkedin.com/company/edureka
Views: 59151 edureka!
The KNN Algorithm: A quick tutorial
 
04:32
A quick, 5-minute tutorial about how the KNN algorithm for classification works
Views: 59226 Krishna Kinnal
KNN Algorithm using Python | How KNN Algorithm works | Python Data Science Training | Edureka
 
19:52
** Python for Data Science: https://www.edureka.co/python ** This Edureka video on KNN Algorithm will help you to build your base by covering the theoretical, mathematical and implementation part of the KNN algorithm in Python. Topics covered under this video includes: 1. What is KNN Algorithm? 2. Industrial Use case of KNN Algorithm 3. How things are predicted using KNN Algorithm 4. How to choose the value of K? 5. KNN Algorithm Using Python 6. Implementation of KNN Algorithm from scratch Check out our playlist for more videos: http://bit.ly/2taym8X Subscribe to our channel to get video updates. Hit the subscribe button above. #KNNAlgorithm #MachineLearningUsingPython #MachineLearningTraining How it Works? 1. This is a 5 Week Instructor led Online Course,40 hours of assignment and 20 hours of project work 2. We have a 24x7 One-on-One LIVE Technical Support to help you with any problems you might face or any clarifications you may require during the course. 3. At the end of the training you will be working on a real time project for which we will provide you a Grade and a Verifiable Certificate! - - - - - - - - - - - - - - - - - About the Course Edureka’s Machine Learning Course using Python is designed to make you grab the concepts of Machine Learning. The Machine Learning training will provide deep understanding of Machine Learning and its mechanism. As a Data Scientist, you will be learning the importance of Machine Learning and its implementation in python programming language. Furthermore, you will be taught Reinforcement Learning which in turn is an important aspect of Artificial Intelligence. You will be able to automate real life scenarios using Machine Learning Algorithms. Towards the end of the course, we will be discussing various practical use cases of Machine Learning in python programming language to enhance your learning experience. After completing this Machine Learning Certification Training using Python, you should be able to: Gain insight into the 'Roles' played by a Machine Learning Engineer Automate data analysis using python Describe Machine Learning Work with real-time data Learn tools and techniques for predictive modeling Discuss Machine Learning algorithms and their implementation Validate Machine Learning algorithms Explain Time Series and it’s related concepts Gain expertise to handle business in future, living the present - - - - - - - - - - - - - - - - - - - Why learn Machine Learning with Python? Data Science is a set of techniques that enables the computers to learn the desired behavior from data without explicitly being programmed. It employs techniques and theories drawn from many fields within the broad areas of mathematics, statistics, information science, and computer science. This course exposes you to different classes of machine learning algorithms like supervised, unsupervised and reinforcement algorithms. This course imparts you the necessary skills like data pre-processing, dimensional reduction, model evaluation and also exposes you to different machine learning algorithms like regression, clustering, decision trees, random forest, Naive Bayes and Q-Learning. For more information, Please write back to us at [email protected] or call us at IND: 9606058406 / US: 18338555775 (toll free). Instagram: https://www.instagram.com/edureka_learning/ Facebook: https://www.facebook.com/edurekaIN/ Twitter: https://twitter.com/edurekain LinkedIn: https://www.linkedin.com/company/edureka
Views: 42482 edureka!
Mod-01 Lec-04 Clustering vs. Classification
 
46:55
Pattern Recognition by Prof. C.A. Murthy & Prof. Sukhendu Das,Department of Computer Science and Engineering,IIT Madras.For more details on NPTEL visit http://nptel.ac.in
Views: 21154 nptelhrd
Naive Bayes Classifier ll Data Mining And Warehousing Explained with Solved Example in Hindi
 
10:48
📚📚📚📚📚📚📚📚 GOOD NEWS FOR COMPUTER ENGINEERS INTRODUCING 5 MINUTES ENGINEERING 🎓🎓🎓🎓🎓🎓🎓🎓 SUBJECT :- Theory Of Computation (TOC) Artificial Intelligence(AI) Database Management System(DBMS) Software Modeling and Designing(SMD) Software Engineering and Project Planning(SEPM) Data mining and Warehouse(DMW) Data analytics(DA) Mobile Communication(MC) Computer networks(CN) High performance Computing(HPC) Operating system System programming (SPOS) Web technology(WT) Internet of things(IOT) Design and analysis of algorithm(DAA) 💡💡💡💡💡💡💡💡 EACH AND EVERY TOPIC OF EACH AND EVERY SUBJECT (MENTIONED ABOVE) IN COMPUTER ENGINEERING LIFE IS EXPLAINED IN JUST 5 MINUTES. 💡💡💡💡💡💡💡💡 THE EASIEST EXPLANATION EVER ON EVERY ENGINEERING SUBJECT IN JUST 5 MINUTES. 🙏🙏🙏🙏🙏🙏🙏🙏 YOU JUST NEED TO DO 3 MAGICAL THINGS LIKE SHARE & SUBSCRIBE TO MY YOUTUBE CHANNEL 5 MINUTES ENGINEERING
Views: 20190 5 Minutes Engineering
Naive Bayes Theorem | Introduction to Naive Bayes Theorem | Machine Learning Classification
 
09:50
Naive Bayes is a machine learning algorithm for classification problems. It is based on Bayes’ probability theorem. It is primarily used for text classification which involves high dimensional training data sets. A few examples are spam filtration, sentimental analysis, and classifying news articles. It is not only known for its simplicity, but also for its effectiveness. It is fast to build models and make predictions with Naive Bayes algorithm. Naive Bayes is the first algorithm that should be considered for solving text classification problem. Hence, you should learn this algorithm thoroughly. This video will talk about below: 1. Machine Learning Classification 2. Naive Bayes Theorem About us: HackerEarth is building the largest hub of programmers to help them practice and improve their programming skills. At HackerEarth, programmers: 1. Solve problems on Algorithms, DS, ML etc(https://goo.gl/6G4NjT). 2. Participate in coding contests(https://goo.gl/plOmbn) 3. Participate in hackathons(https://goo.gl/btD3D2) Subscribe Our Channel For More Updates : https://goo.gl/suzeTB For More Updates, Please follow us on: Facebook : https://goo.gl/40iEqB Twitter : https://goo.gl/LcTAsM LinkedIn : https://goo.gl/iQCgJh Blog : https://goo.gl/9yOzvG
Views: 92110 HackerEarth
Naive Bayes Classifier Tutorial | Naive Bayes Classifier Example | Naive Bayes in R | Edureka
 
01:04:06
( Data Science Training - https://www.edureka.co/data-science ) This Naive Bayes Tutorial video from Edureka will help you understand all the concepts of Naive Bayes classifier, use cases and how it can be used in the industry. This video is ideal for both beginners as well as professionals who want to learn or brush up their concepts in Data Science and Machine Learning through Naive Bayes. Below are the topics covered in this tutorial: 1. What is Machine Learning? 2. Introduction to Classification 3. Classification Algorithms 4. What is Naive Bayes? 5. Use Cases of Naive Bayes 6. Demo – Employee Salary Prediction in R Subscribe to our channel to get video updates. Hit the subscribe button above. Check our complete Data Science playlist here: https://goo.gl/60NJJS #NaiveBayes #NaiveBayesTutorial #DataScienceTraining #Datascience #Edureka How it Works? 1. There will be 30 hours of instructor-led interactive online classes, 40 hours of assignments and 20 hours of project 2. We have a 24x7 One-on-One LIVE Technical Support to help you with any problems you might face or any clarifications you may require during the course. 3. You will get Lifetime Access to the recordings in the LMS. 4. At the end of the training you will have to complete the project based on which we will provide you a Verifiable Certificate! - - - - - - - - - - - - - - About the Course Edureka's Data Science course will cover the whole data life cycle ranging from Data Acquisition and Data Storage using R-Hadoop concepts, Applying modelling through R programming using Machine learning algorithms and illustrate impeccable Data Visualization by leveraging on 'R' capabilities. - - - - - - - - - - - - - - Why Learn Data Science? Data Science training certifies you with ‘in demand’ Big Data Technologies to help you grab the top paying Data Science job title with Big Data skills and expertise in R programming, Machine Learning and Hadoop framework. After the completion of the Data Science course, you should be able to: 1. Gain insight into the 'Roles' played by a Data Scientist 2. Analyse Big Data using R, Hadoop and Machine Learning 3. Understand the Data Analysis Life Cycle 4. Work with different data formats like XML, CSV and SAS, SPSS, etc. 5. Learn tools and techniques for data transformation 6. Understand Data Mining techniques and their implementation 7. Analyse data using machine learning algorithms in R 8. Work with Hadoop Mappers and Reducers to analyze data 9. Implement various Machine Learning Algorithms in Apache Mahout 10. Gain insight into data visualization and optimization techniques 11. Explore the parallel processing feature in R - - - - - - - - - - - - - - Who should go for this course? The course is designed for all those who want to learn machine learning techniques with implementation in R language, and wish to apply these techniques on Big Data. The following professionals can go for this course: 1. Developers aspiring to be a 'Data Scientist' 2. Analytics Managers who are leading a team of analysts 3. SAS/SPSS Professionals looking to gain understanding in Big Data Analytics 4. Business Analysts who want to understand Machine Learning (ML) Techniques 5. Information Architects who want to gain expertise in Predictive Analytics 6. 'R' professionals who want to captivate and analyze Big Data 7. Hadoop Professionals who want to learn R and ML techniques 8. Analysts wanting to understand Data Science methodologies For more information, Please write back to us at [email protected] or call us at IND: 9606058406 / US: 18338555775 (toll free). Instagram: https://www.instagram.com/edureka_learning/ Facebook: https://www.facebook.com/edurekaIN/ Twitter: https://twitter.com/edurekain LinkedIn: https://www.linkedin.com/company/edureka Customer Reviews: Gnana Sekhar Vangara, Technology Lead at WellsFargo.com, says, "Edureka Data science course provided me a very good mixture of theoretical and practical training. The training course helped me in all areas that I was previously unclear about, especially concepts like Machine learning and Mahout. The training was very informative and practical. LMS pre recorded sessions and assignmemts were very good as there is a lot of information in them that will help me in my job. The trainer was able to explain difficult to understand subjects in simple terms. Edureka is my teaching GURU now...Thanks EDUREKA and all the best."
Views: 46805 edureka!
Decision Tree Algorithm & Analysis | Machine Learning Algorithm | Data Science Training | Edureka
 
01:21:31
( Data Science Training - https://www.edureka.co/data-science ) This Edureka Decision Tree tutorial will help you understand all the basics of Decision tree. This decision tree tutorial is ideal for both beginners as well as professionals who want to learn or brush up their Data Science concepts, learn decision tree analysis along with examples. Below are the topics covered in this tutorial: 1) Machine Learning Introduction 2) Classification 3) Types of classifiers 4) Decision tree 5) How does Decision tree work? 6) Demo in R Subscribe to our channel to get video updates. Hit the subscribe button above. Check our complete Data Science playlist here: https://goo.gl/60NJJS #decisiontree #Datasciencetutorial #Datasciencecourse #datascience How it Works? 1. There will be 30 hours of instructor-led interactive online classes, 40 hours of assignments and 20 hours of project 2. We have a 24x7 One-on-One LIVE Technical Support to help you with any problems you might face or any clarifications you may require during the course. 3. You will get Lifetime Access to the recordings in the LMS. 4. At the end of the training you will have to complete the project based on which we will provide you a Verifiable Certificate! - - - - - - - - - - - - - - About the Course Edureka's Data Science course will cover the whole data life cycle ranging from Data Acquisition and Data Storage using R-Hadoop concepts, Applying modelling through R programming using Machine learning algorithms and illustrate impeccable Data Visualization by leveraging on 'R' capabilities. - - - - - - - - - - - - - - Why Learn Data Science? Data Science training certifies you with ‘in demand’ Big Data Technologies to help you grab the top paying Data Science job title with Big Data skills and expertise in R programming, Machine Learning and Hadoop framework. After the completion of the Data Science course, you should be able to: 1. Gain insight into the 'Roles' played by a Data Scientist 2. Analyse Big Data using R, Hadoop and Machine Learning 3. Understand the Data Analysis Life Cycle 4. Work with different data formats like XML, CSV and SAS, SPSS, etc. 5. Learn tools and techniques for data transformation 6. Understand Data Mining techniques and their implementation 7. Analyse data using machine learning algorithms in R 8. Work with Hadoop Mappers and Reducers to analyze data 9. Implement various Machine Learning Algorithms in Apache Mahout 10. Gain insight into data visualization and optimization techniques 11. Explore the parallel processing feature in R - - - - - - - - - - - - - - Who should go for this course? The course is designed for all those who want to learn machine learning techniques with implementation in R language, and wish to apply these techniques on Big Data. The following professionals can go for this course: 1. Developers aspiring to be a 'Data Scientist' 2. Analytics Managers who are leading a team of analysts 3. SAS/SPSS Professionals looking to gain understanding in Big Data Analytics 4. Business Analysts who want to understand Machine Learning (ML) Techniques 5. Information Architects who want to gain expertise in Predictive Analytics 6. 'R' professionals who want to captivate and analyze Big Data 7. Hadoop Professionals who want to learn R and ML techniques 8. Analysts wanting to understand Data Science methodologies For more information, Please write back to us at [email protected] or call us at IND: 9606058406 / US: 18338555775 (toll free). Instagram: https://www.instagram.com/edureka_learning/ Facebook: https://www.facebook.com/edurekaIN/ Twitter: https://twitter.com/edurekain LinkedIn: https://www.linkedin.com/company/edureka Customer Reviews: Gnana Sekhar Vangara, Technology Lead at WellsFargo.com, says, "Edureka Data science course provided me a very good mixture of theoretical and practical training. The training course helped me in all areas that I was previously unclear about, especially concepts like Machine learning and Mahout. The training was very informative and practical. LMS pre recorded sessions and assignmemts were very good as there is a lot of information in them that will help me in my job. The trainer was able to explain difficult to understand subjects in simple terms. Edureka is my teaching GURU now...Thanks EDUREKA and all the best. "
Views: 61834 edureka!
Naive Bayes Classifier in Python | Naive Bayes Algorithm | Machine Learning Algorithm | Edureka
 
30:19
** Machine Learning Training with Python: https://www.edureka.co/python ** This Edureka video will provide you with a detailed and comprehensive knowledge of Naive Bayes Classifier Algorithm in python. At the end of the video, you will learn from a demo example on Naive Bayes. Below are the topics covered in this tutorial: 1. What is Naive Bayes? 2. Bayes Theorem and its use 3. Mathematical Working of Naive Bayes 4. Step by step Programming in Naive Bayes 5. Prediction Using Naive Bayes Check out our playlist for more videos: http://bit.ly/2taym8X Subscribe to our channel to get video updates. Hit the subscribe button above. #MachineLearningUsingPython #MachineLearningTraning How it Works? 1. This is a 5 Week Instructor led Online Course,40 hours of assignment and 20 hours of project work 2. We have a 24x7 One-on-One LIVE Technical Support to help you with any problems you might face or any clarifications you may require during the course. 3. At the end of the training, you will be working on a real-time project for which we will provide you a Grade and a Verifiable Certificate! - - - - - - - - - - - - - - - - - About the Course Edureka’s Machine Learning Course using Python is designed to make you grab the concepts of Machine Learning. The Machine Learning training will provide deep understanding of Machine Learning and its mechanism. As a Data Scientist, you will be learning the importance of Machine Learning and its implementation in python programming language. Furthermore, you will be taught Reinforcement Learning which in turn is an important aspect of Artificial Intelligence. You will be able to automate real life scenarios using Machine Learning Algorithms. Towards the end of the course, we will be discussing various practical use cases of Machine Learning in python programming language to enhance your learning experience. After completing this Machine Learning Certification Training using Python, you should be able to: Gain insight into the 'Roles' played by a Machine Learning Engineer Automate data analysis using python Describe Machine Learning Work with real-time data Learn tools and techniques for predictive modeling Discuss Machine Learning algorithms and their implementation Validate Machine Learning algorithms Explain Time Series and it’s related concepts Gain expertise to handle business in future, living the present - - - - - - - - - - - - - - - - - - - Why learn Machine Learning with Python? Data Science is a set of techniques that enable the computers to learn the desired behavior from data without explicitly being programmed. It employs techniques and theories drawn from many fields within the broad areas of mathematics, statistics, information science, and computer science. This course exposes you to different classes of machine learning algorithms like supervised, unsupervised and reinforcement algorithms. This course imparts you the necessary skills like data pre-processing, dimensional reduction, model evaluation and also exposes you to different machine learning algorithms like regression, clustering, decision trees, random forest, Naive Bayes and Q-Learning. For more information, Please write back to us at [email protected] or call us at IND: 9606058406 / US: 18338555775 (toll free). Instagram: https://www.instagram.com/edureka_learning/ Facebook: https://www.facebook.com/edurekaIN/ Twitter: https://twitter.com/edurekain LinkedIn: https://www.linkedin.com/company/edureka
Views: 28080 edureka!
Data Mining - Clustering
 
06:52
What is clustering Partitioning a data into subclasses. Grouping similar objects. Partitioning the data based on similarity. Eg:Library. Clustering Types Partitioning Method Hierarchical Method Agglomerative Method Divisive Method Density Based Method Model based Method Constraint based Method These are clustering Methods or types. Clustering Algorithms,Clustering Applications and Examples are also Explained.
Data Mining - Decision tree
 
03:29
Decision tree represents decisions and decision Making. Root Node,Internal Node,Branch Node and leaf Node are the Parts of Decision tree Decision tree is also called Classification tree. Examples & Advantages for decision tree is explained. Data mining,text Mining,information Extraction,Machine Learning and Pattern Recognition are the fileds were decision tree is used. ID3,c4.5,CART,CHAID, MARS are some of the decision tree algorithms. when Decision tree is used for classification task, it is also called classification tree.
Decision Tree Algorithm With Example | Decision Tree In Machine Learning | Data Science |Simplilearn
 
32:40
This Decision Tree algorithm in Machine Learning tutorial video will help you understand all the basics of Decision Tree along with what is Machine Learning, problems in Machine Learning, what is Decision Tree, advantages and disadvantages of Decision Tree, how Decision Tree algorithm works with solved examples and at the end we will implement a Decision Tree use case/ demo in Python on loan payment prediction. This Decision Tree tutorial is ideal for both beginners as well as professionals who want to learn Machine Learning Algorithms. Below topics are covered in this Decision Tree Algorithm Tutorial: 1. What is Machine Learning? ( 02:25 ) 2. Types of Machine Learning? ( 03:27 ) 3. Problems in Machine Learning ( 04:43 ) 4. What is Decision Tree? ( 06:29 ) 5. What are the problems a Decision Tree Solves? ( 07:11 ) 6. Advantages of Decision Tree ( 07:54 ) 7. How does Decision Tree Work? ( 10:55 ) 8. Use Case - Loan Repayment Prediction ( 14:32 ) What is Machine Learning: Machine Learning is an application of Artificial Intelligence (AI) that provides systems the ability to automatically learn and improve from experience without being explicitly programmed. Subscribe to our channel for more Machine Learning Tutorials: https://www.youtube.com/user/Simplilearn?sub_confirmation=1 Machine Learning Articles: https://www.simplilearn.com/what-is-artificial-intelligence-and-why-ai-certification-article?utm_campaign=Decision-Tree-Algorithm-With-Example-RmajweUFKvM&utm_medium=Tutorials&utm_source=youtube To gain in-depth knowledge of Machine Learning, check our Machine Learning certification training course: https://www.simplilearn.com/big-data-and-analytics/machine-learning-certification-training-course?utm_campaign=Decision-Tree-Algorithm-With-Example-RmajweUFKvM&utm_medium=Tutorials&utm_source=youtube #MachineLearningAlgorithms #Datasciencecourse #DataScience #SimplilearnMachineLearning #MachineLearningCourse - - - - - - - - About Simplilearn Machine Learning course: A form of artificial intelligence, Machine Learning is revolutionizing the world of computing as well as all people’s digital interactions. Machine Learning powers such innovative automated technologies as recommendation engines, facial recognition, fraud protection and even self-driving cars.This Machine Learning course prepares engineers, data scientists and other professionals with knowledge and hands-on skills required for certification and job competency in Machine Learning. - - - - - - - Why learn Machine Learning? Machine Learning is taking over the world- and with that, there is a growing need among companies for professionals to know the ins and outs of Machine Learning The Machine Learning market size is expected to grow from USD 1.03 Billion in 2016 to USD 8.81 Billion by 2022, at a Compound Annual Growth Rate (CAGR) of 44.1% during the forecast period. - - - - - - What skills will you learn from this Machine Learning course? By the end of this Machine Learning course, you will be able to: 1. Master the concepts of supervised, unsupervised and reinforcement learning concepts and modeling. 2. Gain practical mastery over principles, algorithms, and applications of Machine Learning through a hands-on approach which includes working on 28 projects and one capstone project. 3. Acquire thorough knowledge of the mathematical and heuristic aspects of Machine Learning. 4. Understand the concepts and operation of support vector machines, kernel SVM, naive Bayes, decision tree classifier, random forest classifier, logistic regression, K-nearest neighbors, K-means clustering and more. 5. Be able to model a wide variety of robust Machine Learning algorithms including deep learning, clustering, and recommendation systems - - - - - - - Who should take this Machine Learning Training Course? We recommend this Machine Learning training course for the following professionals in particular: 1. Developers aspiring to be a data scientist or Machine Learning engineer 2. Information architects who want to gain expertise in Machine Learning algorithms 3. Analytics professionals who want to work in Machine Learning or artificial intelligence 4. Graduates looking to build a career in data science and Machine Learning - - - - - - For more updates on courses and tips follow us on: - Facebook: https://www.facebook.com/Simplilearn - Twitter: https://twitter.com/simplilearn - LinkedIn: https://www.linkedin.com/company/simplilearn - Website: https://www.simplilearn.com Get the Android app: http://bit.ly/1WlVo4u Get the iOS app: http://apple.co/1HIO5J0
Views: 39633 Simplilearn
Support Vector Machine (SVM) - Fun and Easy Machine Learning
 
07:28
Support Vector Machine (SVM) - Fun and Easy Machine Learning ►FREE YOLO GIFT - http://augmentedstartups.info/yolofreegiftsp ►KERAS COURSE - https://www.udemy.com/machine-learning-fun-and-easy-using-python-and-keras/?couponCode=YOUTUBE_ML ►MACHINE LEARNING COURSES -http://augmentedstartups.info/machine-learning-courses ------------------------------------------------------------------------ A Support Vector Machine (SVM) is a discriminative classifier formally defined by a separating hyperplane. In other words, given labeled training data (supervised learning), the algorithm outputs an optimal hyperplane which categorizes new examples. To understand SVM’s a bit better, Lets first take a look at why they are called support vector machines. So say we got some sample data over here of features that classify whether a observed picture is a dog or a cat, so we can for example look at snout length or and ear geometry if we assume that dogs generally have longer snouts and cat have much more pointy ear shapes. So how do we decide where to draw our decision boundary? Well we can draw it over here or here or like this. Any of these would be fine, but what would be the best? If we do not have the optimal decision boundary we could incorrectly mis-classify a dog with a cat. So if we draw an arbitrary separation line and we use intuition to draw it somewhere between this data point for the dog class and this data point of the cat class. These points are known as support Vectors – Which are defined as data points that the margin pushes up against or points that are closest to the opposing class. So the algorithm basically implies that only support vector are important whereas other training examples are ‘ignorable’. An example of this is so that if you have our case of a dog that looks like a cat or cat that is groomed like a dog, we want our classifier to look at these extremes and set our margins based on these support vectors. ------------------------------------------------------------ Support us on Patreon ►AugmentedStartups.info/Patreon Chat to us on Discord ►AugmentedStartups.info/discord Interact with us on Facebook ►AugmentedStartups.info/Facebook Check my latest work on Instagram ►AugmentedStartups.info/instagram Learn Advanced Tutorials on Udemy ►AugmentedStartups.info/udemy ------------------------------------------------------------ To learn more on Artificial Intelligence, Augmented Reality IoT, Deep Learning FPGAs, Arduinos, PCB Design and Image Processing then check out http://augmentedstartups.info/home Please Like and Subscribe for more videos :)
Views: 174278 Augmented Startups
How Artificial Neural Network (ANN) Algorithm Work | Data Mining | Introduction to Neural Network
 
09:58
#ArtificialNeuralNetwork | Beginners guide to how artificial neural network model works. Learn how neural network approaches the problem, why and how the process works in ANN, various ways errors can be used in creating machine learning models and ways to optimise the learning process. - Watch our new free Python for Data Science Beginners tutorial: https://greatlearningforlife.com/python - Visit https://greatlearningforlife.com our learning portal for 100s of hours of similar free high-quality tutorial videos on Python, R, Machine Learning, AI and other similar topics Know More about Great Lakes Analytics Programs: PG Program in Business Analytics (PGP-BABI): http://bit.ly/2f4ptdi PG Program in Big Data Analytics (PGP-BDA): http://bit.ly/2eT1Hgo Business Analytics Certificate Program: http://bit.ly/2wX42PD #ANN #MachineLearning #DataMining #NeuralNetwork About Great Learning: - Great Learning is an online and hybrid learning company that offers high-quality, impactful, and industry-relevant programs to working professionals like you. These programs help you master data-driven decision-making regardless of the sector or function you work in and accelerate your career in high growth areas like Data Science, Big Data Analytics, Machine Learning, Artificial Intelligence & more. - Watch the video to know ''Why is there so much hype around 'Artificial Intelligence'?'' https://www.youtube.com/watch?v=VcxpBYAAnGM - What is Machine Learning & its Applications? https://www.youtube.com/watch?v=NsoHx0AJs-U - Do you know what the three pillars of Data Science? Here explaining all about the pillars of Data Science: https://www.youtube.com/watch?v=xtI2Qa4v670 - Want to know more about the careers in Data Science & Engineering? Watch this video: https://www.youtube.com/watch?v=0Ue_plL55jU - For more interesting tutorials, don't forget to Subscribe our channel: https://www.youtube.com/user/beaconelearning?sub_confirmation=1 - Learn More at: https://www.greatlearning.in/ For more updates on courses and tips follow us on: - Google Plus: https://plus.google.com/u/0/108438615307549697541 - Facebook: https://www.facebook.com/GreatLearningOfficial/ - LinkedIn: https://www.linkedin.com/company/great-learning/
Views: 68813 Great Learning
K mean clustering algorithm with solve example
 
12:13
#kmean datawarehouse #datamining #lastmomenttuitions Take the Full Course of Datawarehouse What we Provide 1)22 Videos (Index is given down) + Update will be Coming Before final exams 2)Hand made Notes with problems for your to practice 3)Strategy to Score Good Marks in DWM To buy the course click here: https://lastmomenttuitions.com/course/data-warehouse/ Buy the Notes https://lastmomenttuitions.com/course/data-warehouse-and-data-mining-notes/ if you have any query email us at [email protected] Index Introduction to Datawarehouse Meta data in 5 mins Datamart in datawarehouse Architecture of datawarehouse how to draw star schema slowflake schema and fact constelation what is Olap operation OLAP vs OLTP decision tree with solved example K mean clustering algorithm Introduction to data mining and architecture Naive bayes classifier Apriori Algorithm Agglomerative clustering algorithmn KDD in data mining ETL process FP TREE Algorithm Decision tree
Views: 353629 Last moment tuitions
Classification in Orange (CS2401)
 
24:02
A quick tutorial on analysing data in Orange using Classification.
Views: 44398 haikel5