Home
Search results “Text mining classification algorithms in data”
6 Types of Classification Algorithms
 
02:51
Here are some of the most commonly used classification algorithms -- Logistic Regression, Naïve Bayes, Stochastic Gradient Descent, K-Nearest Neighbours, Decision Tree, Random Forest and Support Vector Machine. https://analyticsindiamag.com/7-types-classification-algorithms/ -------------------------------------------------- Get in touch with us: Website: www.analyticsindiamag.com Contact: [email protected] Facebook: https://www.facebook.com/AnalyticsIndiaMagazine/ Twitter: http://www.twitter.com/analyticsindiam Linkedin: https://www.linkedin.com/company-beta/10283931/ Instagram: https://www.instagram.com/analyticsindiamagazine/
Brian Lange | It's Not Magic: Explaining Classification Algorithms
 
42:45
PyData Chicago 2016 As organizations increasingly make use of data and machine learning methods, people must build a basic "data literacy". Data scientist & instructor Brian Lange provides simple, visual & equation-free explanations for a variety of classification algorithms geared towards helping understand them. He shows how the concepts explained can be pulled off using Python library Scikit Learn in a few lines.
Views: 8058 PyData
Text Classification Using Naive Bayes
 
16:29
This is a low math introduction and tutorial to classifying text using Naive Bayes. One of the most seminal methods to do so.
Views: 86311 Francisco Iacobelli
Data Science Tutorial | Creating Text Classifier Model using Naive Bayes Algorithm
 
20:28
In this third video text analytics in R, I've talked about modeling process using the naive bayes classifier that helps us creating a statistical text classifier model which helps classifying the data in ham or spam sms message. You will see how you can tune the parameters also and make the best use of naive bayes classifier model.
How to Build a Text Mining, Machine Learning Document Classification System in R!
 
26:02
We show how to build a machine learning document classification system from scratch in less than 30 minutes using R. We use a text mining approach to identify the speaker of unmarked presidential campaign speeches. Applications in brand management, auditing, fraud detection, electronic medical records, and more.
Views: 159465 Timothy DAuria
The OneR Classifier .. What it is and How it Works
 
06:36
My web page: www.imperial.ac.uk/people/n.sadawi
Views: 28200 Noureddin Sadawi
Naive Bayes Theorem | Introduction to Naive Bayes Theorem | Machine Learning Classification
 
09:50
Naive Bayes is a machine learning algorithm for classification problems. It is based on Bayes’ probability theorem. It is primarily used for text classification which involves high dimensional training data sets. A few examples are spam filtration, sentimental analysis, and classifying news articles. It is not only known for its simplicity, but also for its effectiveness. It is fast to build models and make predictions with Naive Bayes algorithm. Naive Bayes is the first algorithm that should be considered for solving text classification problem. Hence, you should learn this algorithm thoroughly. This video will talk about below: 1. Machine Learning Classification 2. Naive Bayes Theorem About us: HackerEarth is building the largest hub of programmers to help them practice and improve their programming skills. At HackerEarth, programmers: 1. Solve problems on Algorithms, DS, ML etc(https://goo.gl/6G4NjT). 2. Participate in coding contests(https://goo.gl/plOmbn) 3. Participate in hackathons(https://goo.gl/btD3D2) Subscribe Our Channel For More Updates : https://goo.gl/suzeTB For More Updates, Please follow us on: Facebook : https://goo.gl/40iEqB Twitter : https://goo.gl/LcTAsM LinkedIn : https://goo.gl/iQCgJh Blog : https://goo.gl/9yOzvG
Views: 64685 HackerEarth
Data Mining Lecture -- Bayesian Classification | Naive Bayes Classifier | Solved Example (Eng-Hindi)
 
09:02
In the bayesian classification The final ans doesn't matter in the calculation Because there is no need of value for the decision you have to simply identify which one is greater and therefore you can find the final result. -~-~~-~~~-~~-~- Please watch: "PL vs FOL | Artificial Intelligence | (Eng-Hindi) | #3" https://www.youtube.com/watch?v=GS3HKR6CV8E -~-~~-~~~-~~-~-
Views: 123058 Well Academy
Text Classification - Natural Language Processing With Python and NLTK p.11
 
11:41
Now that we understand some of the basics of of natural language processing with the Python NLTK module, we're ready to try out text classification. This is where we attempt to identify a body of text with some sort of label. To start, we're going to use some sort of binary label. Examples of this could be identifying text as spam or not, or, like what we'll be doing, positive sentiment or negative sentiment. Playlist link: https://www.youtube.com/watch?v=FLZvOKSCkxY&list=PLQVvvaa0QuDf2JswnfiGkliBInZnIC4HL&index=1 sample code: http://pythonprogramming.net http://hkinsley.com https://twitter.com/sentdex http://sentdex.com http://seaofbtc.com
Views: 90389 sentdex
How K-Nearest Neighbors (kNN) Classifier Works
 
10:04
My web page: www.imperial.ac.uk/people/n.sadawi
Views: 86623 Noureddin Sadawi
Machine Learning - Text Classification with Python, nltk, Scikit & Pandas
 
20:05
In this video I will show you how to do text classification with machine learning using python, nltk, scikit and pandas. The concepts shown in this video will enable you to build your own models for your own use cases. So let's go! _About the channel_____________________ TL;DR Awesome Data science with very little math! -- Hello I'm Jo the “Coding Maniac”! On my channel I will show you how to make awesome things with Data Science. Further I will present you some short Videos covering the basic fundamentals about Machine Learning and Data Science like Feature Tuning, Over/Undersampling, Overfitting, ... with Python. All videos will be simple to follow and I'll try to reduce the complicated mathematical stuff to a minimum because I believe that you don't need to know how a CPU works to be able to operate a PC... GitHub: https://github.com/coding-maniac _Equipment _____________________ Camera: http://amzn.to/2hkVs5X Camera lens: http://amzn.to/2fCEU9z Audio-Recorder: http://amzn.to/2jNu2KJ Microphone: http://amzn.to/2hloKBG Light: http://amzn.to/2w8J92N _More videos _____________________ More videos in german: https://youtu.be/rtyJyzqeByU, https://youtu.be/1A3JVSQZ4N0 Subscribe "Coding Maniac": https://www.youtube.com/channel/UCG0TtnkdbMvN5OYQcgNFY1w More videos on "Coding Maniac": https://www.youtube.com/channel/UCG0TtnkdbMvN5OYQcgNFY1w _Social Media_____________________ ►Facebook: https://www.facebook.com/codingmaniac/ _____________________
Views: 17103 Coding-Maniac
Text Classification using Machine Learning : Part 1 - Preprocessing the data
 
21:17
Join me as I build a spam filtering bot using Python and Scikit-learn. In this video, we are going to preprocess some data to make it suitable to train a model on. Code is optimised for Python 2. Download the dataset here: http://www.aueb.gr/users/ion/data/enron-spam/preprocessed/enron1.tar.gz Part 2: https://youtu.be/6Wd1C0-3RXM Entire code available here: https://gist.github.com/SouravJohar/bcbbad0d0b7e881cd0dca3481e32381f
Views: 9311 Sourav Johar
Text Mining for Beginners
 
07:30
This is a brief introduction to text mining for beginners. Find out how text mining works and the difference between text mining and key word search, from the leader in natural language based text mining solutions. Learn more about NLP text mining in 90 seconds: https://www.youtube.com/watch?v=GdZWqYGrXww Learn more about NLP text mining for clinical risk monitoring https://www.youtube.com/watch?v=SCDaE4VRzIM
Views: 73893 Linguamatics
TEXT CLASSIFICATION ALGORITHM IN DATA MINNING
 
12:45
A lot of side-information is available along with the text documents in online forums. Information may be of different kinds, such as the links in the document, user-access behavior from web logs, or other non-textual attributes which are embedded into the text document. The relative importance of this side-information may be difficult to estimate, especially when some of the information is noisy., or can add noise to the process. It can be risky to incorporate side information into the clustering process, because it can either improve the quality of the representation for clustering
Views: 185 Dhivya Balu
Data Mining Classification and Prediction ( in Hindi)
 
05:57
A tutorial about classification and prediction in Data Mining .
Views: 19382 Red Apple Tutorials
How to Make a Text Summarizer - Intro to Deep Learning #10
 
09:06
I'll show you how you can turn an article into a one-sentence summary in Python with the Keras machine learning library. We'll go over word embeddings, encoder-decoder architecture, and the role of attention in learning theory. Code for this video (Challenge included): https://github.com/llSourcell/How_to_make_a_text_summarizer Jie's Winning Code: https://github.com/jiexunsee/rudimentary-ai-composer More Learning resources: https://www.quora.com/Has-Deep-Learning-been-applied-to-automatic-text-summarization-successfully https://research.googleblog.com/2016/08/text-summarization-with-tensorflow.html https://en.wikipedia.org/wiki/Automatic_summarization http://deeplearning.net/tutorial/rnnslu.html http://machinelearningmastery.com/text-generation-lstm-recurrent-neural-networks-python-keras/ Please subscribe! And like. And comment. That's what keeps me going. Join us in the Wizards Slack channel: http://wizards.herokuapp.com/ And please support me on Patreon: https://www.patreon.com/user?u=3191693 Follow me: Twitter: https://twitter.com/sirajraval Facebook: https://www.facebook.com/sirajology Instagram: https://www.instagram.com/sirajraval/ Instagram: https://www.instagram.com/sirajraval/ Signup for my newsletter for exciting updates in the field of AI: https://goo.gl/FZzJ5w
Views: 136007 Siraj Raval
Machine Learning Lecture 3: working with text + nearest neighbor classification
 
10:47
We continue our work with sentiment analysis from Lecture 2. I go over common ways of preprocessing text in Machine Learning: n-grams, stemming, stop words, wordnet, and part of speech tagging. In part 2 I introduce a common approach to k-nearest neighbor classification with text (It is very similar to something called the vector space model with tf-idf encoding and cosine distance) Code and other helpful links: http://karpathy.ca/mlsite/lecture3.php
Views: 25221 MLexplained
Week 7: Text Mining Conceptual Overview of Techniques
 
14:35
Carolyn Rose discusses text mining conceptual overview of techniques for week 7 of DALMOOC.
Text Analytics - Ep. 25 (Deep Learning SIMPLIFIED)
 
06:48
Unstructured textual data is ubiquitous, but standard Natural Language Processing (NLP) techniques are often insufficient tools to properly analyze this data. Deep learning has the potential to improve these techniques and revolutionize the field of text analytics. Deep Learning TV on Facebook: https://www.facebook.com/DeepLearningTV/ Twitter: https://twitter.com/deeplearningtv Some of the key tools of NLP are lemmatization, named entity recognition, POS tagging, syntactic parsing, fact extraction, sentiment analysis, and machine translation. NLP tools typically model the probability that a language component (such as a word, phrase, or fact) will occur in a specific context. An example is the trigram model, which estimates the likelihood that three words will occur in a corpus. While these models can be useful, they have some limitations. Language is subjective, and the same words can convey completely different meanings. Sometimes even synonyms can differ in their precise connotation. NLP applications require manual curation, and this labor contributes to variable quality and consistency. Deep Learning can be used to overcome some of the limitations of NLP. Unlike traditional methods, Deep Learning does not use the components of natural language directly. Rather, a deep learning approach starts by intelligently mapping each language component to a vector. One particular way to vectorize a word is the “one-hot” representation. Each slot of the vector is a 0 or 1. However, one-hot vectors are extremely big. For example, the Google 1T corpus has a vocabulary with over 13 million words. One-hot vectors are often used alongside methods that support dimensionality reduction like the continuous bag of words model (CBOW). The CBOW model attempts to predict some word “w” by examining the set of words that surround it. A shallow neural net of three layers can be used for this task, with the input layer containing one-hot vectors of the surrounding words, and the output layer firing the prediction of the target word. The skip-gram model performs the reverse task by using the target to predict the surrounding words. In this case, the hidden layer will require fewer nodes since only the target node is used as input. Thus the activations of the hidden layer can be used as a substitute for the target word’s vector. Two popular tools: Word2Vec: https://code.google.com/archive/p/word2vec/ Glove: http://nlp.stanford.edu/projects/glove/ Word vectors can be used as inputs to a deep neural network in applications like syntactic parsing, machine translation, and sentiment analysis. Syntactic parsing can be performed with a recursive neural tensor network, or RNTN. An RNTN consists of a root node and two leaf nodes in a tree structure. Two words are placed into the net as input, with each leaf node receiving one word. The leaf nodes pass these to the root, which processes them and forms an intermediate parse. This process is repeated recursively until every word of the sentence has been input into the net. In practice, the recursion tends to be much more complicated since the RNTN will analyze all possible sub-parses, rather than just the next word in the sentence. As a result, the deep net would be able to analyze and score every possible syntactic parse. Recurrent nets are a powerful tool for machine translation. These nets work by reading in a sequence of inputs along with a time delay, and producing a sequence of outputs. With enough training, these nets can learn the inherent syntactic and semantic relationships of corpora spanning several human languages. As a result, they can properly map a sequence of words in one language to the proper sequence in another language. Richard Socher’s Ph.D. thesis included work on the sentiment analysis problem using an RNTN. He introduced the notion that sentiment, like syntax, is hierarchical in nature. This makes intuitive sense, since misplacing a single word can sometimes change the meaning of a sentence. Consider the following sentence, which has been adapted from his thesis: “He turned around a team otherwise known for overall bad temperament” In the above example, there are many words with negative sentiment, but the term “turned around” changes the entire sentiment of the sentence from negative to positive. A traditional sentiment analyzer would probably label the sentence as negative given the number of negative terms. However, a well-trained RNTN would be able to interpret the deep structure of the sentence and properly label it as positive. Credits Nickey Pickorita (YouTube art) - https://www.upwork.com/freelancers/~0147b8991909b20fca Isabel Descutner (Voice) - https://www.youtube.com/user/IsabelDescutner Dan Partynski (Copy Editing) - https://www.linkedin.com/in/danielpartynski Marek Scibior (Prezi creator, Illustrator) - http://brawuroweprezentacje.pl/ Jagannath Rajagopal (Creator, Producer and Director) - https://ca.linkedin.com/in/jagannathrajagopal
Views: 40949 DeepLearning.TV
Text Mining - Part I
 
10:39
Tutorial sobre Mineração de Dados (Data Mining) utilizando o software WEKA. Acesso http://mineracaodedados.wordpress.com o maior site sobre Data Mining do Brasil.
Views: 9929 Flávio Clésio
How KNN algrorithm works with example : K - Nearest Neighbor
 
08:33
How KNN algorithm works with example: K - Nearest Neighbor, Classifiers, Data Mining, Knowledge Discovery, Data Analytics
Views: 110440 shreyans jain
Difference between Classification and Regression - Georgia Tech - Machine Learning
 
03:29
Watch on Udacity: https://www.udacity.com/course/viewer#!/c-ud262/l-313488098/m-674518790 Check out the full Advanced Operating Systems course for free at: https://www.udacity.com/course/ud262 Georgia Tech online Master's program: https://www.udacity.com/georgia-tech
Views: 65862 Udacity
Decision Tree with Solved Example in English | DWM | ML | BDA
 
21:21
Take the Full Course of Datawarehouse What we Provide 1)22 Videos (Index is given down) + Update will be Coming Before final exams 2)Hand made Notes with problems for your to practice 3)Strategy to Score Good Marks in DWM To buy the course click here: https://goo.gl/to1yMH or Fill the form we will contact you https://goo.gl/forms/2SO5NAhqFnjOiWvi2 if you have any query email us at [email protected] or [email protected] Index Introduction to Datawarehouse Meta data in 5 mins Datamart in datawarehouse Architecture of datawarehouse how to draw star schema slowflake schema and fact constelation what is Olap operation OLAP vs OLTP decision tree with solved example K mean clustering algorithm Introduction to data mining and architecture Naive bayes classifier Apriori Algorithm Agglomerative clustering algorithmn KDD in data mining ETL process FP TREE Algorithm Decision tree
Views: 147792 Last moment tuitions
Weka Text Classification for First Time & Beginner Users
 
59:21
59-minute beginner-friendly tutorial on text classification in WEKA; all text changes to numbers and categories after 1-2, so 3-5 relate to many other data analysis (not specifically text classification) using WEKA. 5 main sections: 0:00 Introduction (5 minutes) 5:06 TextToDirectoryLoader (3 minutes) 8:12 StringToWordVector (19 minutes) 27:37 AttributeSelect (10 minutes) 37:37 Cost Sensitivity and Class Imbalance (8 minutes) 45:45 Classifiers (14 minutes) 59:07 Conclusion (20 seconds) Some notable sub-sections: - Section 1 - 5:49 TextDirectoryLoader Command (1 minute) - Section 2 - 6:44 ARFF File Syntax (1 minute 30 seconds) 8:10 Vectorizing Documents (2 minutes) 10:15 WordsToKeep setting/Word Presence (1 minute 10 seconds) 11:26 OutputWordCount setting/Word Frequency (25 seconds) 11:51 DoNotOperateOnAPerClassBasis setting (40 seconds) 12:34 IDFTransform and TFTransform settings/TF-IDF score (1 minute 30 seconds) 14:09 NormalizeDocLength setting (1 minute 17 seconds) 15:46 Stemmer setting/Lemmatization (1 minute 10 seconds) 16:56 Stopwords setting/Custom Stopwords File (1 minute 54 seconds) 18:50 Tokenizer setting/NGram Tokenizer/Bigrams/Trigrams/Alphabetical Tokenizer (2 minutes 35 seconds) 21:25 MinTermFreq setting (20 seconds) 21:45 PeriodicPruning setting (40 seconds) 22:25 AttributeNamePrefix setting (16 seconds) 22:42 LowerCaseTokens setting (1 minute 2 seconds) 23:45 AttributeIndices setting (2 minutes 4 seconds) - Section 3 - 28:07 AttributeSelect for reducing dataset to improve classifier performance/InfoGainEval evaluator/Ranker search (7 minutes) - Section 4 - 38:32 CostSensitiveClassifer/Adding cost effectiveness to base classifier (2 minutes 20 seconds) 42:17 Resample filter/Example of undersampling majority class (1 minute 10 seconds) 43:27 SMOTE filter/Example of oversampling the minority class (1 minute) - Section 5 - 45:34 Training vs. Testing Datasets (1 minute 32 seconds) 47:07 Naive Bayes Classifier (1 minute 57 seconds) 49:04 Multinomial Naive Bayes Classifier (10 seconds) 49:33 K Nearest Neighbor Classifier (1 minute 34 seconds) 51:17 J48 (Decision Tree) Classifier (2 minutes 32 seconds) 53:50 Random Forest Classifier (1 minute 39 seconds) 55:55 SMO (Support Vector Machine) Classifier (1 minute 38 seconds) 57:35 Supervised vs Semi-Supervised vs Unsupervised Learning/Clustering (1 minute 20 seconds) Classifiers introduces you to six (but not all) of WEKA's popular classifiers for text mining; 1) Naive Bayes, 2) Multinomial Naive Bayes, 3) K Nearest Neighbor, 4) J48, 5) Random Forest and 6) SMO. Each StringToWordVector setting is shown, e.g. tokenizer, outputWordCounts, normalizeDocLength, TF-IDF, stopwords, stemmer, etc. These are ways of representing documents as document vectors. Automatically converting 2,000 text files (plain text documents) into an ARFF file with TextDirectoryLoader is shown. Additionally shown is AttributeSelect which is a way of improving classifier performance by reducing the dataset. Cost-Sensitive Classifier is shown which is a way of assigning weights to different types of guesses. Resample and SMOTE are shown as ways of undersampling the majority class and oversampling the majority class. Introductory tips are shared throughout, e.g. distinguishing supervised learning (which is most of data mining) from semi-supervised and unsupervised learning, making identically-formatted training and testing datasets, how to easily subset outliers with the Visualize tab and more... ---------- Update March 24, 2014: Some people asked where to download the movie review data. It is named Polarity_Dataset_v2.0 and shared on Bo Pang's Cornell Ph.D. student page http://www.cs.cornell.edu/People/pabo/movie-review-data/ (Bo Pang is now a Senior Research Scientist at Google)
Views: 131592 Brandon Weinberg
Text Mining Example Using RapidMiner
 
07:01
Explains how text mining can be performed on a set of unstructured data
Views: 12028 Gautam Shah
Decision Tree (CART) - Machine Learning Fun and Easy
 
08:46
Decision Tree (CART) - Machine Learning Fun and Easy https://www.udemy.com/machine-learning-fun-and-easy-using-python-and-keras/?couponCode=YOUTUBE_ML Decision tree is a type of supervised learning algorithm (having a pre-defined target variable) that is mostly used in classification problems. A tree has many analogies in real life, and turns out that it has influenced a wide area of machine learning, covering both classification and regression (CART). So a decision tree is a flow-chart-like structure, where each internal node denotes a test on an attribute, each branch represents the outcome of a test, and each leaf (or terminal) node holds a class label. The topmost node in a tree is the root node. To learn more on Augmented Reality, IoT, Machine Learning FPGAs, Arduinos, PCB Design and Image Processing then Check out http://www.arduinostartups.com/ Please like and Subscribe for more videos :) -------------------------------------------------- Support us on Patreon http://bit.ly/PatreonArduinoStartups --------------------------------------------------
Views: 93426 Augmented Startups
Classification in Orange (CS2401)
 
24:02
A quick tutorial on analysing data in Orange using Classification.
Views: 38686 haikel5
Machine Learning in R - Classification, Regression and Clustering Problems
 
06:40
Learn the basics of Machine Learning with R. Start our Machine Learning Course for free: https://www.datacamp.com/courses/introduction-to-machine-learning-with-R First up is Classification. A *classification problem* involves predicting whether a given observation belongs to one of two or more categories. The simplest case of classification is called binary classification. It has to decide between two categories, or classes. Remember how I compared machine learning to the estimation of a function? Well, based on earlier observations of how the input maps to the output, classification tries to estimate a classifier that can generate an output for an arbitrary input, the observations. We say that the classifier labels an unseen example with a class. The possible applications of classification are very broad. For example, after a set of clinical examinations that relate vital signals to a disease, you could predict whether a new patient with an unseen set of vital signals suffers that disease and needs further treatment. Another totally different example is classifying a set of animal images into cats, dogs and horses, given that you have trained your model on a bunch of images for which you know what animal they depict. Can you think of a possible classification problem yourself? What's important here is that first off, the output is qualitative, and second, that the classes to which new observations can belong, are known beforehand. In the first example I mentioned, the classes are "sick" and "not sick". In the second examples, the classes are "cat", "dog" and "horse". In chapter 3 we will do a deeper analysis of classification and you'll get to work with some fancy classifiers! Moving on ... A **Regression problem** is a kind of Machine Learning problem that tries to predict a continuous or quantitative value for an input, based on previous information. The input variables, are called the predictors and the output the response. In some sense, regression is pretty similar to classification. You're also trying to estimate a function that maps input to output based on earlier observations, but this time you're trying to estimate an actual value, not just the class of an observation. Do you remember the example from last video, there we had a dataset on a group of people's height and weight. A valid question could be: is there a linear relationship between these two? That is, will a change in height correlate linearly with a change in weight, if so can you describe it and if we know the weight, can you predict the height of a new person given their weight ? These questions can be answered with linear regression! Together, \beta_0 and \beta_1 are known as the model coefficients or parameters. As soon as you know the coefficients beta 0 and beta 1 the function is able to convert any new input to output. This means that solving your machine learning problem is actually finding good values for beta 0 and beta 1. These are estimated based on previous input to output observations. I will not go into details on how to compute these coefficients, the function `lm()` does this for you in R. Now, I hear you asking: what can regression be useful for apart from some silly weight and height problems? Well, there are many different applications of regression, going from modeling credit scores based on past payements, finding the trend in your youtube subscriptions over time, or even estimating your chances of landing a job at your favorite company based on your college grades. All these problems have two things in common. First off, the response, or the thing you're trying to predict, is always quantitative. Second, you will always need input knowledge of previous input-output observations, in order to build your model. The fourth chapter of this course will be devoted to a more comprehensive overview of regression. Soooo.. Classification: check. Regression: check. Last but not least, there is clustering. In clustering, you're trying to group objects that are similar, while making sure the clusters themselves are dissimilar. You can think of it as classification, but without saying to which classes the observations have to belong or how many classes there are. Take the animal photo's for example. In the case of classification, you had information about the actual animals that were depicted. In the case of clustering, you don't know what animals are depicted, you would simply get a set of pictures. The clustering algorithm then simply groups similar photos in clusters. You could say that clustering is different in the sense that you don't need any knowledge about the labels. Moreover, there is no right or wrong in clustering. Different clusterings can reveal different and useful information about your objects. This makes it quite different from both classification and regression, where there always is a notion of prior expectation or knowledge of the result.
Views: 34734 DataCamp
Data Mining Lecture -- Rule - Based Classification (Eng-Hindi)
 
03:29
-~-~~-~~~-~~-~- Please watch: "PL vs FOL | Artificial Intelligence | (Eng-Hindi) | #3" https://www.youtube.com/watch?v=GS3HKR6CV8E -~-~~-~~~-~~-~-
Views: 29889 Well Academy
Machine Learning Lecture 2: Sentiment Analysis (text classification)
 
09:47
In this video we work on an actual sentiment analysis dataset (which is an instance of text classification), for which I also provide Python code (see below). The approach is very similar to something that is commonly called a Naive Bayes Classifier. Website associated with this video: http://karpathy.ca/mlsite/lecture2.php
Views: 50678 MLexplained
How kNN algorithm works
 
04:42
In this video I describe how the k Nearest Neighbors algorithm works, and provide a simple example using 2-dimensional data and k = 3. This presentation is available at: http://prezi.com/ukps8hzjizqw/?utm_campaign=share&utm_medium=copy
Views: 360411 Thales Sehn Körting
Text Classification with Weka using a J48 Decision Tree
 
12:30
In this tutorial it is described how to train a J48 decision tree classifier to classify certain sentences into three different classes. Afterwords we save this classification model in order to use it for a different testing set of sentences. While doing so, the most important informations displayed in the plaintext output are explained. Follow me on Twitter: https://twitter.com/PhilOver_
Views: 45726 S0naris
Support Vector Machine (SVM) - Fun and Easy Machine Learning
 
07:28
Support Vector Machine (SVM) - Fun and Easy Machine Learning https://www.udemy.com/machine-learning-fun-and-easy-using-python-and-keras/?couponCode=YOUTUBE_ML A Support Vector Machine (SVM) is a discriminative classifier formally defined by a separating hyperplane. In other words, given labeled training data (supervised learning), the algorithm outputs an optimal hyperplane which categorizes new examples. To understand SVM’s a bit better, Lets first take a look at why they are called support vector machines. So say we got some sample data over here of features that classify whether a observed picture is a dog or a cat, so we can for example look at snout length or and ear geometry if we assume that dogs generally have longer snouts and cat have much more pointy ear shapes. So how do we decide where to draw our decision boundary? Well we can draw it over here or here or like this. Any of these would be fine, but what would be the best? If we do not have the optimal decision boundary we could incorrectly mis-classify a dog with a cat. So if we draw an arbitrary separation line and we use intuition to draw it somewhere between this data point for the dog class and this data point of the cat class. These points are known as support Vectors – Which are defined as data points that the margin pushes up against or points that are closest to the opposing class. So the algorithm basically implies that only support vector are important whereas other training examples are ‘ignorable’. An example of this is so that if you have our case of a dog that looks like a cat or cat that is groomed like a dog, we want our classifier to look at these extremes and set our margins based on these support vectors. ----------- www.ArduinoStartups.com ----------- To learn more on Augmented Reality, IoT, Machine Learning FPGAs, Arduinos, PCB Design and Image Processing then Check out http://www.arduinostartups.com/ Please like and Subscribe for more videos :)
Views: 107960 Augmented Startups
Naïve Bayes Classifier -  Fun and Easy Machine Learning
 
11:59
Naive Bayes Classifier- Fun and Easy Machine Learning https://www.udemy.com/machine-learning-fun-and-easy-using-python-and-keras/?couponCode=YOUTUBE_ML Now Naïve Bayes is based on Bayes Theorem also known as conditional Theorem, which you can think of it as an evidence theorem or trust theorem. So basically how much can you trust the evidence that is coming in, and it’s a formula that describes how much you should believe the evidence that you are being presented with. An example would be a dog barking in the middle of the night. If the dog always barks for no good reason, you would become desensitized to it and not go check if anything is wrong, this is known as false positives. However if the dog barks only whenever someone enters your premises, you’d be more likely to act on the alert and trust or rely on the evidence from the dog. So Bayes theorem is a mathematic formula for how much you should trust evidence. So lets take a look deeper at the formula, • We can start of with the Prior Probability which describes the degree to which we believe the model accurately describes reality based on all of our prior information, So how probable was our hypothesis before observing the evidence. • Here we have the likelihood which describes how well the model predicts the data. This is term over here is the normalizing constant, the constant that makes the posterior density integrate to one. Like we seen over here. • And finally the output that we want is the posterior probability which represents the degree to which we believe a given model accurately describes the situation given the available data and all of our prior information. So how probable is our hypothesis given the observed evidence. So with our example above. We can view the probability that we play golf given it is sunny = the probability that we play golf given a yes times the probability it being sunny divided by probability of a yes. This uses the golf example to explain Naive Bayes. To learn more on Augmented Reality, IoT, Machine Learning FPGAs, Arduinos, PCB Design and Image Processing then Check out http://www.arduinostartups.com/ Please like and Subscribe for more videos :)
Views: 83685 Augmented Startups
INTRODUCTION TO CLASSIFICATION - DATA MINING
 
01:29
Classification consists of predicting a certain outcome based on a given input. In order to predict the outcome, the algorithm processes a training set containing a set of attributes and the respective outcome, usually called goal or prediction attribute. The algorithm tries to discover relationships between the attributes that would make it possible to predict the outcome. Next the algorithm is given a data set not seen before, called prediction set, which contains the same set of attributes, except for the prediction attribute – not yet known. The algorithm analyses the input and produces a prediction.
Views: 31635 Nina Canares
Rule Base Classifier in Machine Learning in Hindi | Machine Learning Tutorials #7
 
30:15
In this video we have explain the concept of Rule based Classifier in hindi Ml full notes rupees 200 only ML notes form : https://goo.gl/forms/7rk8716Tfto6MXIh1 Machine learning introduction : https://goo.gl/wGvnLg Machine learning #2 : https://goo.gl/ZFhAHd Machine learning #3 : https://goo.gl/rZ4v1f Linear Regression in Machine Learning : https://goo.gl/7fDLbA Logistic regression in Machine learning #4.2 : https://goo.gl/Ga4JDM decision tree : https://goo.gl/Gdmbsa K mean clustering algorithm : https://goo.gl/zNLnW5 Agglomerative clustering algorithmn : https://goo.gl/9Lcaa8 Apriori Algorithm : https://goo.gl/hGw3bY Naive bayes classifier : https://goo.gl/JKa8o2
Views: 5537 Last moment tuitions
How SVM (Support Vector Machine) algorithm works
 
07:33
In this video I explain how SVM (Support Vector Machine) algorithm works to classify a linearly separable binary data set. The original presentation is available at http://prezi.com/jdtqiauncqww/?utm_campaign=share&utm_medium=copy&rc=ex0share
Views: 475898 Thales Sehn Körting
Natural Language Processing (NLP) & Text Mining Tutorial Using NLTK | NLP Training | Edureka
 
40:29
** NLP Using Python: - https://www.edureka.co/python-natural-language-processing-course ** This Edureka video will provide you with a comprehensive and detailed knowledge of Natural Language Processing, popularly known as NLP. You will also learn about the different steps involved in processing the human language like Tokenization, Stemming, Lemmatization and much more along with a demo on each one of the topics. The following topics covered in this video : 1. The Evolution of Human Language 2. What is Text Mining? 3. What is Natural Language Processing? 4. Applications of NLP 5. NLP Components and Demo Do subscribe to our channel and hit the bell icon to never miss an update from us in the future: https://goo.gl/6ohpTV --------------------------------------------------------------------------------------------------------- Facebook: https://www.facebook.com/edurekaIN/ Twitter: https://twitter.com/edurekain LinkedIn: https://www.linkedin.com/company/edureka Instagram: https://www.instagram.com/edureka_learning/ --------------------------------------------------------------------------------------------------------- - - - - - - - - - - - - - - How it Works? 1. This is 21 hrs of Online Live Instructor-led course. Weekend class: 7 sessions of 3 hours each. 2. We have a 24x7 One-on-One LIVE Technical Support to help you with any problems you might face or any clarifications you may require during the course. 3. At the end of the training you will have to undergo a 2-hour LIVE Practical Exam based on which we will provide you a Grade and a Verifiable Certificate! - - - - - - - - - - - - - - About the Course Edureka's Natural Language Processing using Python Training focuses on step by step guide to NLP and Text Analytics with extensive hands-on using Python Programming Language. It has been packed up with a lot of real-life examples, where you can apply the learnt content to use. Features such as Semantic Analysis, Text Processing, Sentiment Analytics and Machine Learning have been discussed. This course is for anyone who works with data and text– with good analytical background and little exposure to Python Programming Language. It is designed to help you understand the important concepts and techniques used in Natural Language Processing using Python Programming Language. You will be able to build your own machine learning model for text classification. Towards the end of the course, we will be discussing various practical use cases of NLP in python programming language to enhance your learning experience. -------------------------- Who Should go for this course ? Edureka’s NLP Training is a good fit for the below professionals: From a college student having exposure to programming to a technical architect/lead in an organisation Developers aspiring to be a ‘Data Scientist' Analytics Managers who are leading a team of analysts Business Analysts who want to understand Text Mining Techniques 'Python' professionals who want to design automatic predictive models on text data "This is apt for everyone” --------------------------------- Why Learn Natural Language Processing or NLP? Natural Language Processing (or Text Analytics/Text Mining) applies analytic tools to learn from collections of text data, like social media, books, newspapers, emails, etc. The goal can be considered to be similar to humans learning by reading such material. However, using automated algorithms we can learn from massive amounts of text, very much more than a human can. It is bringing a new revolution by giving rise to chatbots and virtual assistants to help one system address queries of millions of users. NLP is a branch of artificial intelligence that has many important implications on the ways that computers and humans interact. Human language, developed over thousands and thousands of years, has become a nuanced form of communication that carries a wealth of information that often transcends the words alone. NLP will become an important technology in bridging the gap between human communication and digital data. --------------------------------- For Natural Language Processing Training call us at US: +18336900808 (Toll Free) or India: +918861301699 , Or, write back to us at [email protected]
Views: 4997 edureka!
K Nearest Neighbor(KNN) Classification in R | Data Science | Machine Learning
 
18:40
IN this video you will learn how to perform the K Nearest neighbor classification R. You will also learn the theory of KNN. KNN is a type of classification algo like Logistic regression, decisions tree, SVM & random forest. However, this is a non-parametric technique ANalytics Study Pack : http://analyticuniversity.com/ Analytics University on Twitter : https://twitter.com/AnalyticsUniver Analytics University on Facebook : https://www.facebook.com/AnalyticsUniversity Logistic Regression in R: https://goo.gl/S7DkRy Logistic Regression in SAS: https://goo.gl/S7DkRy Logistic Regression Theory: https://goo.gl/PbGv1h Time Series Theory : https://goo.gl/54vaDk Time ARIMA Model in R : https://goo.gl/UcPNWx Survival Model : https://goo.gl/nz5kgu Data Science Career : https://goo.gl/Ca9z6r Machine Learning : https://goo.gl/giqqmx Data Science Case Study : https://goo.gl/KzY5Iu Big Data & Hadoop & Spark: https://goo.gl/ZTmHOA .
Views: 7769 Analytics University
Text Classification using Spark Machine Learning
 
01:00:20
The goal of text classification is the classification of text documents into a fixed number of predefined categories. Text classification has a number of applications ranging from email spam detection to providing news feed content to users based on user preferences. In this session, we explore how to perform text classification using Spark’s Machine Learning Library (MLlib). We see how MLlib provides a set of high-level APIs for constructing, evaluating and tuning a machine learning workflow. We explore how Spark represents a workflow as a Pipeline, which consists of a sequence of stages to be run in a specific order. The Pipeline for our text classification use case utilizes Transformer stages to prepare the raw text documents for classification, and Estimator stages to learn a machine learning model that can be used to classify documents. Finally, we illustrate how to tune the model for best fit. Although a document classification use case is specifically explored, many of the principles demonstrated in the session can be employed in a variety of other machine learning use cases. Here's the link to the slides https://ibm.box.com/s/atp4ezwvo5jr27zpxlu4987ercep2arn And the link to the notebook as an .ipynb file. https://ibm.box.com/s/spcj7f3uz6qetq8442mnvw5j264wbilj
Views: 10474 Data Gurus
Classification using Pandas and Scikit-Learn
 
45:02
Skipper Seabold http://www.pyvideo.org/video/3548/classification-using-pandas-and-scikit-learn This will be a tutorial-style talk demonstrating how to use pandas and scikit-learn to do classification tasks. We will do some data munging and visualization using pandas and matplotlib. Then we will introduce some of the different classifiers in scikit-learn and show how to include them into a classification pipeline to produce the best predictive model. Interactive IPython/Jupyter notebooks will be provided.
Views: 36280 Next Day Video
Decision Tree 1: how it works
 
09:26
Full lecture: http://bit.ly/D-Tree A Decision Tree recursively splits training data into subsets based on the value of a single attribute. Each split corresponds to a node in the. Splitting stops when every subset is pure (all elements belong to a single class) -- this can always be achieved, unless there are duplicate training examples with different classes.
Views: 455057 Victor Lavrenko
Naive Bayes Classifier Tutorial | Naive Bayes Classifier Example | Naive Bayes in R | Edureka
 
01:04:06
( Data Science Training - https://www.edureka.co/data-science ) This Naive Bayes Tutorial video from Edureka will help you understand all the concepts of Naive Bayes classifier, use cases and how it can be used in the industry. This video is ideal for both beginners as well as professionals who want to learn or brush up their concepts in Data Science and Machine Learning through Naive Bayes. Below are the topics covered in this tutorial: 1. What is Machine Learning? 2. Introduction to Classification 3. Classification Algorithms 4. What is Naive Bayes? 5. Use Cases of Naive Bayes 6. Demo – Employee Salary Prediction in R Subscribe to our channel to get video updates. Hit the subscribe button above. Check our complete Data Science playlist here: https://goo.gl/60NJJS #NaiveBayes #NaiveBayesTutorial #DataScienceTraining #Datascience #Edureka How it Works? 1. There will be 30 hours of instructor-led interactive online classes, 40 hours of assignments and 20 hours of project 2. We have a 24x7 One-on-One LIVE Technical Support to help you with any problems you might face or any clarifications you may require during the course. 3. You will get Lifetime Access to the recordings in the LMS. 4. At the end of the training you will have to complete the project based on which we will provide you a Verifiable Certificate! - - - - - - - - - - - - - - About the Course Edureka's Data Science course will cover the whole data life cycle ranging from Data Acquisition and Data Storage using R-Hadoop concepts, Applying modelling through R programming using Machine learning algorithms and illustrate impeccable Data Visualization by leveraging on 'R' capabilities. - - - - - - - - - - - - - - Why Learn Data Science? Data Science training certifies you with ‘in demand’ Big Data Technologies to help you grab the top paying Data Science job title with Big Data skills and expertise in R programming, Machine Learning and Hadoop framework. After the completion of the Data Science course, you should be able to: 1. Gain insight into the 'Roles' played by a Data Scientist 2. Analyse Big Data using R, Hadoop and Machine Learning 3. Understand the Data Analysis Life Cycle 4. Work with different data formats like XML, CSV and SAS, SPSS, etc. 5. Learn tools and techniques for data transformation 6. Understand Data Mining techniques and their implementation 7. Analyse data using machine learning algorithms in R 8. Work with Hadoop Mappers and Reducers to analyze data 9. Implement various Machine Learning Algorithms in Apache Mahout 10. Gain insight into data visualization and optimization techniques 11. Explore the parallel processing feature in R - - - - - - - - - - - - - - Who should go for this course? The course is designed for all those who want to learn machine learning techniques with implementation in R language, and wish to apply these techniques on Big Data. The following professionals can go for this course: 1. Developers aspiring to be a 'Data Scientist' 2. Analytics Managers who are leading a team of analysts 3. SAS/SPSS Professionals looking to gain understanding in Big Data Analytics 4. Business Analysts who want to understand Machine Learning (ML) Techniques 5. Information Architects who want to gain expertise in Predictive Analytics 6. 'R' professionals who want to captivate and analyze Big Data 7. Hadoop Professionals who want to learn R and ML techniques 8. Analysts wanting to understand Data Science methodologies Please write back to us at [email protected] or call us at +918880862004 or 18002759730 for more information. Facebook: https://www.facebook.com/edurekaIN/ Twitter: https://twitter.com/edurekain LinkedIn: https://www.linkedin.com/company/edureka Customer Reviews: Gnana Sekhar Vangara, Technology Lead at WellsFargo.com, says, "Edureka Data science course provided me a very good mixture of theoretical and practical training. The training course helped me in all areas that I was previously unclear about, especially concepts like Machine learning and Mahout. The training was very informative and practical. LMS pre recorded sessions and assignmemts were very good as there is a lot of information in them that will help me in my job. The trainer was able to explain difficult to understand subjects in simple terms. Edureka is my teaching GURU now...Thanks EDUREKA and all the best."
Views: 39683 edureka!
Machine Learning Tutorial | Machine Learning Algorithms | Data Science Training | Edureka
 
38:13
***** Python Certification Training for Data Science : https://www.edureka.co/python ***** This Edureka video on "Machine Learning Tutorial" will help you get started with all the Machine Learning concepts. Below are the topics covered in this video: 1. Why Machine Learning? 2. What is Machine Learning? 3. Types of Machine Learning 4. What can you do with Machine Learning? 5. Machine Learning Demo in Python Subscribe to our channel to get video updates. Hit the subscribe button above. Machine Learning Tutorial Playlist: https://goo.gl/UxjTxm #DataScience #MachineLearningTutorial #MachineLearningAlgorithm - - - - - - - - - - - - - - - - - About the Course Edureka's Python Certification Training not only focuses on fundamentals of Python, Statistics and Machine Learning but also helps one gain expertise in applied Data Science at scale using Python. The training is a step by step guide to Python and Data Science with extensive hands on. The course is packed with several activity problems and assignments and scenarios that help you gain practical experience in addressing predictive modeling problem that would either require Machine Learning using Python. Starting from basics of Statistics such as mean, median and mode to exploring features such as Data Analysis, Regression, Classification, Clustering, Naive Bayes, Cross Validation, Label Encoding, Random Forests, Decision Trees and Support Vector Machines with a supporting example and exercise help you get into the weeds. Furthermore, you will be taught of Reinforcement Learning which in turn is an important aspect of Artificial Intelligence. You will be able to train your machine based on real-life scenarios using Machine Learning Algorithms. Edureka’s Python course will also cover both basic and advanced concepts of Python like writing Python scripts, sequence and file operations in Python. You will use libraries like pandas, numpy, matplotlib, scikit, and master the concepts like Python machine learning, scripts, and sequence. ----------------------------------------------------------- Course Objectives After completing this Data Science Certification training, you will be able to: 1. Programmatically download and analyze data 2. Learn techniques to deal with different types of data – ordinal, categorical, encoding 3. Learn data visualization 4. Using I python notebooks, master the art of presenting step by step data analysis 5. Gain insight into the 'Roles' played by a Machine Learning Engineer 6. Describe Machine Learning 7. Work with real-time data 8. Learn tools and techniques for predictive modeling 9. Discuss Machine Learning algorithms and their implementation 10. Validate Machine Learning algorithms 11. Explain Time Series and its related concepts 12. Perform Text Mining and Sentimental analysis 13. Gain expertise to handle business in future, living the present - - - - - - - - - - - - - - - - - - - Why learn Python for Data Science? It's continued to be a favourite option for data scientists who use it for building and using Machine learning applications and other scientific computations. Python cuts development time in half with its simple to read syntax and easy compilation feature. Debugging programs is a breeze in Python with its built in debugger. It runs on Windows, Linux/Unix, Mac OS and has been ported to Java and .NET virtual machines. Python is free to use, even for the commercial products, because of its OSI-approved open source license. It has evolved as the most preferred Language for Data Analytics and the increasing search trends on Python also indicates that it is the " Next Big Thing " and a must for Professionals in the Data Analytics domain. For more information, please write back to us at [email protected] Call us at US: +18336900808 (Toll Free) or India: +918861301699 Facebook: https://www.facebook.com/edurekaIN/ Twitter: https://twitter.com/edurekain LinkedIn: https://www.linkedin.com/company/edureka
Views: 22995 edureka!
How NLP text mining works: find knowledge hidden in unstructured data
 
01:40
Connect with us: http://www.linguamatics.com/contact What use is big data if you can't find what you're looking for? Follow: @Linguamatics https://twitter.com/Linguamatics https://www.linkedin.com/company/linguamatics https://www.facebook.com/Linguamatics https://plus.google.com/+Linguamatics https://www.youtube.com/user/Linguamatics/videos In knowledge driven industries such as the life sciences and healthcare, finding the right information quickly from huge volumes of text is crucial in supporting the best business decisions. However, around 80% of available information exists as unstructured text, and conventional keyword searches only retrieve documents, which still have to be read. This is very time consuming, unreliable, and, when important decisions rest on it, costly. Linguamatics’ text mining solution, I2E, uses Natural Language Processing to identify and extract relevant knowledge at least 10 times faster than conventional search, often uncovering insights that would otherwise remain unknown. I2E analyses the meaning of the text using powerful linguistic algorithms, enabling you to ask open questions, find the relevant facts and identify valuable connections. Going beyond simple keywords, I2E can recognise concepts and the different ways the same thing can be expressed, increasing the recall of relevant information. I2E then presents high quality results as structured, actionable knowledge, enabling fast review and analysis, and providing dramatically improved speed to insight. Our market leading software is supported by highly qualified domain experts who work with our customers to ensure successful project outcomes. Text mining for beginners: https://www.youtube.com/watch?v=40QIW9Sr6Io
Views: 14780 Linguamatics
Lecture 11: Text Mining (Business Data Mining) Text Classification in Python
 
01:11:14
Lecture 11: Text Mining (Business Data Mining) Text Classification in Python
Views: 305 Phayung Meesad
Data Mining - Decision tree
 
03:29
Decision tree represents decisions and decision Making. Root Node,Internal Node,Branch Node and leaf Node are the Parts of Decision tree Decision tree is also called Classification tree. Examples & Advantages for decision tree is explained. Data mining,text Mining,information Extraction,Machine Learning and Pattern Recognition are the fileds were decision tree is used. ID3,c4.5,CART,CHAID, MARS are some of the decision tree algorithms. when Decision tree is used for classification task, it is also called classification tree.
INTRODUCTION TO TEXT MINING IN HINDI
 
10:34
find relevant notes at-https://viden.io/
Views: 7049 LearnEveryone
Getting Started with Orange 18: Text Classification
 
04:07
How to visualize logistic regression model, build classification workflow for text and predict tale type of unclassified tales. License: GNU GPL + CC Music by: http://www.bensound.com/ Website: https://orange.biolab.si/ Created by: Laboratory for Bioinformatics, Faculty of Computer and Information Science, University of Ljubljana
Views: 13335 Orange Data Mining

Business writing service
Chilis employment application form
Cover letter example for admin officer
Custom writing service
Iphone 3gs ios 6.1.6 application letters